Completion of operadic rewriting systems
by Gaussian elimination

Benjamin Dupont - Philippe Malbos - Isaac Ren

International Workshop on Confluence 2021

July 23rd, 2021

1/24



Outline

|. Introduction and motivation

Il. Rewriting in non-symmetric operads

I1l. F4 completion procedure for non-symmetric operads

IV. Case study: the anti-associative operad

2/24



. Introduction and motivation

3/24



Elimination theory

> Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

P Solve decision problems, e.g. the word problem.
P Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

P Methods to solve systems of polynomial equations.

4/24



Elimination theory

> Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

P Solve decision problems, e.g. the word problem.
P Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

P Methods to solve systems of polynomial equations.

» This latter has been developed in elimination theory.

P Gaussian elimination is used to solve linear systems by eliminating indeterminates.

P Grébner bases give methods to solve non-linear systems by elimination.

4/24



Elimination theory

> Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

P Solve decision problems, e.g. the word problem.
P Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

P Methods to solve systems of polynomial equations.

» This latter has been developed in elimination theory.

P Gaussian elimination is used to solve linear systems by eliminating indeterminates.

P Grébner bases give methods to solve non-linear systems by elimination.

» Objective: Compute Grobner bases by completion of a set of polynomials.

P Grobner bases are confluent linear rewriting systems compatible with a monomial order.

P Computing a Grobner basis is equivalent to completing a linear rewriting system.

4/24



Convergence and Grébner bases

» Let X be an alphabet, and X* be the free monoid on X.

» Fix a monomial order < on X*, that is a well founded total order such that u < v implies
wuw’ < wvw'’ for any w, w’ in X*.

5/24



Convergence and Grébner bases

» Let X be an alphabet, and X* be the free monoid on X.

» Fix a monomial order < on X*, that is a well founded total order such that u < v implies
wuw’ < wvw'’ for any w, w’ in X*.

> Any polynomial u on the variables of X admits a unique leading monomial, denoted by
Im(u). It admits a leading coefficient Ic(u).

5/24



Convergence and Grébner bases

» Let X be an alphabet, and X* be the free monoid on X.

» Fix a monomial order < on X*, that is a well founded total order such that u < v implies

wuw’ < wvw'’ for any w, w’ in X*.

> Any polynomial u on the variables of X admits a unique leading monomial, denoted by
Im(u). It admits a leading coefficient Ic(u).

» A Grdbner basis for an ideal /| generated by a set R of relations compatible with < is a
subset G of / such that

(Im(1)) = (Im(G))

5/24



Convergence and Grébner bases

» Let X be an alphabet, and X* be the free monoid on X.

» Fix a monomial order < on X*, that is a well founded total order such that u < v implies

wuw’ < wvw'’ for any w, w’ in X*.

> Any polynomial u on the variables of X admits a unique leading monomial, denoted by
Im(u). It admits a leading coefficient Ic(u).

» A Grdbner basis for an ideal /| generated by a set R of relations compatible with < is a
subset G of / such that

(Im(1)) = (Im(G))

» Theorem : A subset G of | is a Grobner basis if and only if the rewriting system — ¢

whose rules are 1

Im(u) —¢ Im(u) — e u

for each v in G is convergent.

5/24



Linear rewriting

> Linear rewriting in algebra:

P for commutative algebras, Janet '20, Buchberger '65,
P for associative algebras, Bokut '76, Bergman '78, Mora '94,

P for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren 2021,

6/24



Linear rewriting

> Linear rewriting in algebra:

P for commutative algebras, Janet '20, Buchberger '65,
P for associative algebras, Bokut ‘76, Bergman '78, Mora '94,

P for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren 2021,

» Improved completion procedures for Grobner bases of commutative algebras, e.g.

» Buchberger's syzygy criterion in 1979,

P Faugeére F4 and F5 algorithms in 1999 and 2002.

6/24



Linear rewriting

> Linear rewriting in algebra:
P for commutative algebras, Janet '20, Buchberger '65,
P for associative algebras, Bokut ‘76, Bergman '78, Mora '94,
» for operads, Dotsenko-Khoroshkin 2010, Malbos-Ren '2021,
» Improved completion procedures for Grobner bases of commutative algebras, e.g.
» Buchberger's syzygy criterion in 1979,

P Faugeére F4 and F5 algorithms in 1999 and 2002.

» These procedures are based on two principles:

P eliminate non-necessary branchings, e.g. orthogonal branchings,

P eliminate redundant critical branchings using syzygies.

6/24



Linear rewriting

> Linear rewriting in algebra:

P for commutative algebras, Janet '20, Buchberger '65,
P for associative algebras, Bokut ‘76, Bergman '78, Mora '94,

» for operads, Dotsenko-Khoroshkin 2010, Malbos-Ren '2021,

» Improved completion procedures for Grobner bases of commutative algebras, e.g.
» Buchberger's syzygy criterion in 1979,

P Faugeére F4 and F5 algorithms in 1999 and 2002.

» These procedures are based on two principles:

P eliminate non-necessary branchings, e.g. orthogonal branchings,

P eliminate redundant critical branchings using syzygies.

» These approaches have been studied in the case of non-commutative algebras, Xiu "12,
Chenavier '19, Hofstadler '20.

> Objective: Extend these constructions for the case of non-symmetric operads.

6/24



Il. Rewriting in non-symmetric operads

7/24



Non-symmetric operads

» A (non-symmetric) operad is a collection of vector spaces (P(k))«>1 graded by arity and
equipped with partial composition maps

oj: P(m)oj P(n) — P(m+n—1)

forallmn>1land 1 <i<m.

8/24



Non-symmetric operads

» A (non-symmetric) operad is a collection of vector spaces (P(k))«>1 graded by arity and
equipped with partial composition maps

oj: P(m)oj P(n) — P(m+n—1)

forallmn>1land 1 <i<m.

» Graphically, this can be represented by planar trees, called tree monomials:
i \ i+n—1
1 cee i cee m 1 cee n e
\\/ o N. — 1. - v m+n—1.
M v \

The set of tree monomials is denoted by 7 (X).

8/24



Non-symmetric operads

» A (non-symmetric) operad is a collection of vector spaces (P(k))«>1 graded by arity and
equipped with partial composition maps

oj: P(m)oj P(n) — P(m+n—1)

forall mn>1and 1 <i < m.

» Graphically, this can be represented by planar trees, called tree monomials:
i \ i+n—1
1 cee i cee m 1 cee n e
\\/ o N. —> 1. vooee. m+n—1.
M v \

The set of tree monomials is denoted by 7 (X).

> A free operad is spanned by such planar trees, whose inner vertices belong to a graded
generating set © = (X(k))k>1. It is denoted by F(X).

8/24



Contexts

»> A (monomial) context of inner arity k is a planar tree C[[Jx] whose inner vertices are in
3 except for one, a symbol [J of arity k.

> For a tree monomial u of arity k, we define the tree monomial C[u] by replacing i with u:

oo Yk Yi_oc Yk
~_ -
P ~ \l‘l/ s
x

with x, y1,..., yx tree monomials.

9/24



Monomial orders for operads

> An operadic monomial order is a total order < on planar trees such that, for all tree

monomials u, u’, v, v/ and appropriate compositions o;,
b b b

u<uv,v<v = wuoju <vo;Vv

10/24



Monomial orders for operads

> An operadic monomial order is a total order < on planar trees such that, for all tree
monomials u, v, v, v/ and appropriate compositions o;,

u<u,v<v = wuoju <vo;V

> This monomial order generalizes to rewriting rules in context: C[a] is a planar tree over
¥ U{a}. This allows us to compare rewriting rules in context.

10/24



Operadic rewriting systems (ORS)

> An operadic rewriting system (ORS) is a data (X, R) made of a graded set ¥ and a
binary relation R C T(X) x F(X).

» We consider ORS that are compatible with a monomial order, that is there is a monomial
order < such that h < s(a) for all & € R and any tree monomial h in t(c).

11/24



Operadic rewriting systems (ORS)

> An operadic rewriting system (ORS) is a data (X, R) made of a graded set ¥ and a
binary relation R C T(X) x F(X).

» We consider ORS that are compatible with a monomial order, that is there is a monomial
order < such that h < s(a) for all & € R and any tree monomial h in t(c).

> A reduction of the form AC[a] + 1 : AC[s(a)] + g —r AC[t(a)] + g is a:
P rewriting monomial if A = 1 and g = 0.

> rewriting step if C[s(«)] does not appear as a monomial in g.

11/24



Operadic rewriting systems (ORS)

> An operadic rewriting system (ORS) is a data (X, R) made of a graded set ¥ and a
binary relation R C T(X) x F(X).

» We consider ORS that are compatible with a monomial order, that is there is a monomial
order < such that h < s(a) for all & € R and any tree monomial h in t(c).

> A reduction of the form AC[a] + 1 : AC[s(a)] + g —r AC[t(a)] + g is a:
P rewriting monomial if A = 1 and g = 0.

> rewriting step if C[s(«)] does not appear as a monomial in g.

» The data (F(X), RS*P) defines a terminating ARS.

11/24



Confluence of ORS

> A branching (resp. local branching) of (X, R) is a pair of rewriting paths (resp. rewriting
steps) (a, B) of (X, R) such that s(a) = s(B).

» Local branchings :

additive multiplicative intersecting critical

wvy& W

12/24



Confluence of ORS

> A branching (resp. local branching) of (X, R) is a pair of rewriting paths (resp. rewriting
steps) (a, B) of (X, R) such that s(a) = s(B).

» Local branchings :

additive multiplicative intersecting critical

wvy& W

» Critical branching lemma: An ORS (X, R) compatible with < is locally confluent if and
only if its critical branchings are confluent.

> One can furthermore restrict the set of branchings to consider: essential branchings are
“atomic” critical branchings.

» Theorem (Malbos-R. '21): An ORS (X, R) compatible with < is locally confluent if and
only if its essential branchings are confluent.

12/24



IIl. F4 completion procedure for

non-symmetric operads

13/24



Grobner basis completion procedures

» The general procedure is as follows:

Input: A set R of rules of a terminating rewriting system.

Set R' :=R.

Let C be the set of critical branchings of R’.

while C # & do
Select a subset B of branchings in C, and remove them from C.
Add rewriting rules to R’ to make the non-confluent branchings of B confluent.
Update C with critical branchings induced by the new rules.

Output: A set R’ of rules of a confluent rewriting system.

We study two points:

> |Instead of critical branchings, we can choose any confluence obstruction map.

» Choosing a non-singleton subset for B implies parallel completion of R’.

14/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

> A map CO that associates to every ORS X a set of branchings CO(X) of X is a
confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent < X is confluent.

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

> A map CO that associates to every ORS X a set of branchings CO(X) of X is a
confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent < X is confluent.
> A “good” confluence obstruction map is a confluence generating set.

P For example, critical branching lemma states that critical branchings form a confluence
obstruction map.

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

> A map CO that associates to every ORS X a set of branchings CO(X) of X is a
confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent < X is confluent.

> A “good” confluence obstruction map is a confluence generating set.

P For example, critical branching lemma states that critical branchings form a confluence
obstruction map.
> A set B of branchings of an ORS X is confluence-generating if, for any branching (f, g)
of X, there exist
» branchings (f1,81), - - -, (fa, n), Which are additive, multiplicative, or in B,
P rewriting paths f’ and g/,
P> contexts Cq,...,GC,,

such that f = Gi[f1] - f/, g = Cn[gn] - &', and for all 1 < i < n—1, Glg] = Cii1[fisa]-

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

> A map CO that associates to every ORS X a set of branchings CO(X) of X is a
confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent < X is confluent.

> A “good” confluence obstruction map is a confluence generating set.

P For example, critical branching lemma states that critical branchings form a confluence
obstruction map.

> A set B of branchings of an ORS X is confluence-generating if, for any branching (f, g)
of X, there exist

» branchings (f1,81), - - -, (fa, n), Which are additive, multiplicative, or in B,

P rewriting paths f’ and g/,
P> contexts Cq,...,GC,,

such that f = Gi[f1] - f/, g = Cn[gn] - &', and for all 1 < i < n—1, Glg] = Cii1[fisa]-

» The essential branchings form a smaller confluence generating set: this is what we will use.

15/24



Parallel completion

In 1995, Faugére introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

> At each iteration: select a subset of branchings B following a selection strategy S.

16/24



Parallel completion

In 1995, Faugére introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

> At each iteration: select a subset of branchings B following a selection strategy S.

> Calculate the list of rewriting monomials that appear in the reduction of the selected
branchings:

Input: An ORS (X, R) compatible with <, a list of branchings B, a reduction strategy o.
Set R/ := U(f,g)eB{f7g}-
Set T := Ugeprrsupp(t(f)).
while T # & do

Select a monomial v in T.

if o(u) is not an identity then

Add the rewriting monomial o(u) to R'.
L Add supp(t(o(u))) to T.

Output: A list of rewriting monomials R’.

16/24



Parallel completion

In 1995, Faugére introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

> At each iteration: select a subset of branchings B following a selection strategy S.

> Calculate the list of rewriting monomials that appear in the reduction of the selected
branchings:

Input: An ORS (X, R) compatible with <, a list of branchings B, a reduction strategy o.
Set R/ := U(f,g)eB{f7g}-
Set T := Ugeprrsupp(t(f)).
while T # & do

Select a monomial v in T.

if o(u) is not an identity then

Add the rewriting monomial o(u) to R'.
L Add supp(t(o(u))) to T.

Output: A list of rewriting monomials R’.

» Construct a matrix Mg, whose rows are the rewriting monomials of R’, written in the basis
of tree monomials that occur.

16/24



Parallel completion

In 1995, Faugére introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

> At each iteration: select a subset of branchings B following a selection strategy S.

> Calculate the list of rewriting monomials that appear in the reduction of the selected
branchings:

Input: An ORS (X, R) compatible with <, a list of branchings B, a reduction strategy o.
Set R/ := U(f,g)eB{f7g}-
Set T := Ugeprrsupp(t(f)).
while T # & do

Select a monomial v in T.

if o(u) is not an identity then

Add the rewriting monomial o(u) to R'.
L Add supp(t(o(u))) to T.

Output: A list of rewriting monomials R’.

» Construct a matrix Mg, whose rows are the rewriting monomials of R’, written in the basis
of tree monomials that occur.

» Reduce Mg/ to its row echelon form: the rows whose leading monomials are not sources of
rewriting rules in R’ are the new rules that we add to R’.

16/24



Improved completion procedure

» |n summary: we have parametrized the completion procedure by a confluence obstruction
map CO, a selection strategy S.

Input: A set R of rules of a terminating rewriting system.

Set R’ := R.
Let C := CO(R').
while C # & do

Select B := S(C), and remove them from C.

Following F4, add rewriting rules to R’ to make the non-confluent branchings of B
confluent.

Update C with the branchings of CO(R’) induced by the new rules.

Output: A set R’ of rules of a confluent rewriting system.

17/24



IV. Case study: the anti-associative

operad

18/24



Case study: antiassociative operad

> Consider the following ORS that presents the anti-associative operad:

1 2 2 3
X:—<xe):(2) f: \x/ 3 - -1 \x/ >
\/ \/
X X

> We study the execution of our completion procedure with:
1. the confluence obstruction map that selects essential branchings,
. the selection strategy that selects the branchings of lowest weight,

2
3. the path-lexicographic monomial order <,
4. the reduction strategy o given by taking the smallest rewriting monomial for the context

path-lexicographic order defined in [Malbos-R. 2021].

19/24



Case study: antiassociative operad

> First iteration: we select the only essential branching (f o1 x, x 01 f).

> We obtain the list of rewriting monomials

R’ = {xo01 f,foyx,x0nf,fo1x,fo3zx}.

» The matrix Mg is of the form

Sx_ x:i XX ox /X/X
X~ = 1 1
er 1 1
\;/ 1 1
-~ ?/X 1 1
\X/f 1 1

> Row reduction gives 1s on the diagonal; we add one rewriting rule g : x 02 (x 02 x) = 0 to
the ORS.

20/24



Case study: associative operad

> Second iteration: we select all five essential branchings
P = {(f o2 (x 02 x),x 01 g), (f 03 (x 02 x), g 01 X), (x 02 (f 03 X), g 02 X),
(x 02 (x02f),g03x),(x028,804x)}.

» The matrix Mg is

21/24



Case study: associative operad

» Each column corresponds to the leading monomial of a rewriting rule in R’, so there are no
new rewriting rules.

» The procedure terminates and the final convergent presentation is
3 4
3 \/
2 X
<X€X(2) f: x 3—=>—-1 x ,g: \/ —>0>'
X
\/
X

22/24



Outlook

We have improved the completion procedure for non-symmetric operads in two ways:
» by reducing the number of branchings to be completed,

» by parallelizing the procedure.

And now...
> Investigate better choices for the confluence obstruction map.
» Apply this completion procedure to other monoidal structures, such as properads.

» Interpret completion modulo the linear structure.

23/24



Thank you !

24/24



Essential branchings

» Let us fix an ORS (X, R) and a monomial order < on T (X).

> A monomial order on 7T(X U {0 }>1) induces a monomial order on contexts of F(X).
> Given

» a monomial order < on T(X),

P a monomial order on contexts,

P a3 total order < on R,

we define the rewriting monomial order <, on the set of rewriting monomials by setting
Cla] <rm DI[g] iff

> Cls(a)] < DIs(B)], or
» C[s(a)] = D[s(B)] and C < D,

> Cls(a)] = D[s(B)], C = D and o < 3.

» An essential branching for (X, R) is a critical branching (C[a], D[8]) s.t. C[a] <rm D[f]
and they are consecutive for this order, i.e. there does not exist a rewriting monomial E[v]
such that

Clo] <rm E[y] <rm D[B].



