Completion of operadic rewriting systems by Gaussian elimination

Benjamin Dupont - Philippe Malbos - Isaac Ren

International Workshop on Confluence 2021

July 23rd, 2021

- I. Introduction and motivation
- II. Rewriting in non-symmetric operads
- III. F4 completion procedure for non-symmetric operads
- IV. Case study: the anti-associative operad

I. Introduction and motivation

- Algebraic rewriting : study of presentations of algebraic structures by generators and oriented relations.
 - Solve decision problems, *e.g.* the word problem.
 - Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.
 - Methods to solve systems of polynomial equations.

- Algebraic rewriting : study of presentations of algebraic structures by generators and oriented relations.
 - Solve decision problems, *e.g.* the word problem.
 - Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.
 - Methods to solve systems of polynomial equations.
- This latter has been developed in elimination theory.
 - **Gaussian elimination** is used to solve linear systems by eliminating indeterminates.
 - **Gröbner bases** give methods to solve non-linear systems by elimination.

- Algebraic rewriting : study of presentations of algebraic structures by generators and oriented relations.
 - Solve decision problems, *e.g.* the word problem.
 - Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.
 - Methods to solve systems of polynomial equations.
- This latter has been developed in elimination theory.
 - **Gaussian elimination** is used to solve linear systems by eliminating indeterminates.
 - **Gröbner bases** give methods to solve non-linear systems by elimination.
- Objective: Compute Gröbner bases by completion of a set of polynomials.
 - Gröbner bases are confluent linear rewriting systems compatible with a monomial order.
 - Computing a Gröbner basis is equivalent to completing a linear rewriting system.

Convergence and Gröbner bases

- Let X be an alphabet, and X^* be the free monoid on X.
- Fix a monomial order \prec on X*, that is a well founded total order such that $u \prec v$ implies $wuw' \prec wvw'$ for any w, w' in X*.

Convergence and Gröbner bases

- Let X be an alphabet, and X^* be the free monoid on X.
- Fix a monomial order \prec on X*, that is a well founded total order such that $u \prec v$ implies $wuw' \prec wvw'$ for any w, w' in X*.
- Any polynomial u on the variables of X admits a unique leading monomial, denoted by *lm(u)*. It admits a leading coefficient *lc(u)*.

Convergence and Gröbner bases

- Let X be an alphabet, and X^* be the free monoid on X.
- Fix a monomial order \prec on X*, that is a well founded total order such that $u \prec v$ implies $wuw' \prec wvw'$ for any w, w' in X*.
- Any polynomial u on the variables of X admits a unique leading monomial, denoted by *lm(u)*. It admits a leading coefficient *lc(u)*.
- A Gröbner basis for an ideal *I* generated by a set *R* of relations compatible with ≺ is a subset *G* of *I* such that

 $\langle Im(I) \rangle = \langle Im(G) \rangle$

- Let X be an alphabet, and X^* be the free monoid on X.
- Fix a monomial order \prec on X*, that is a well founded total order such that $u \prec v$ implies $wuw' \prec wvw'$ for any w, w' in X*.
- Any polynomial u on the variables of X admits a unique leading monomial, denoted by *Im(u)*. It admits a leading coefficient *Ic(u)*.
- A Gröbner basis for an ideal *I* generated by a set *R* of relations compatible with ≺ is a subset *G* of *I* such that

$$\langle Im(I) \rangle = \langle Im(G) \rangle$$

Theorem : A subset G of I is a Gröbner basis if and only if the rewriting system \rightarrow_G whose rules are

$$Im(u) \longrightarrow_G Im(u) - \frac{1}{Ic(u)}u$$

for each u in G is convergent.

- Linear rewriting in algebra:
 - for commutative algebras, Janet '20, Buchberger '65,
 - for associative algebras, Bokut '76, Bergman '78, Mora '94,
 - for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren '2021,

- Linear rewriting in algebra:
 - for commutative algebras, Janet '20, Buchberger '65,
 - for associative algebras, Bokut '76, Bergman '78, Mora '94,
 - for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren '2021,
- ▶ Improved completion procedures for Gröbner bases of commutative algebras, e.g.
 - Buchberger's syzygy criterion in 1979,
 - Faugère F4 and F5 algorithms in 1999 and 2002.

- Linear rewriting in algebra:
 - for commutative algebras, Janet '20, Buchberger '65,
 - for associative algebras, Bokut '76, Bergman '78, Mora '94,
 - for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren '2021,
- Improved completion procedures for Gröbner bases of commutative algebras, e.g.
 - Buchberger's syzygy criterion in 1979,
 - Faugère F4 and F5 algorithms in 1999 and 2002.
- These procedures are based on two principles:
 - eliminate non-necessary branchings, e.g. orthogonal branchings,
 - eliminate redundant critical branchings using syzygies.

- Linear rewriting in algebra:
 - for commutative algebras, Janet '20, Buchberger '65,
 - for associative algebras, Bokut '76, Bergman '78, Mora '94,
 - for operads, Dotsenko-Khoroshkin '2010, Malbos-Ren '2021,
- Improved completion procedures for Gröbner bases of commutative algebras, e.g.
 - Buchberger's syzygy criterion in 1979,
 - Faugère F4 and F5 algorithms in 1999 and 2002.
- These procedures are based on two principles:
 - eliminate non-necessary branchings, e.g. orthogonal branchings,
 - eliminate redundant critical branchings using syzygies.
- These approaches have been studied in the case of non-commutative algebras, Xiu '12, Chenavier '19, Hofstadler '20.
- Objective: Extend these constructions for the case of non-symmetric operads.

II. Rewriting in non-symmetric operads

Non-symmetric operads

A (non-symmetric) operad is a collection of vector spaces (P(k))_{k≥1} graded by arity and equipped with partial composition maps

 $\circ_i : P(m) \circ_i P(n) \rightarrow P(m+n-1)$

for all $m, n \geq 1$ and $1 \leq i \leq m$.

Non-symmetric operads

A (non-symmetric) operad is a collection of vector spaces (P(k))_{k≥1} graded by arity and equipped with partial composition maps

$$\circ_i : P(m) \circ_i P(n) \rightarrow P(m+n-1)$$

for all $m, n \ge 1$ and $1 \le i \le m$.

Graphically, this can be represented by planar trees, called tree monomials:

The set of tree monomials is denoted by $\mathcal{T}(\Sigma)$.

Non-symmetric operads

A (non-symmetric) operad is a collection of vector spaces (P(k))_{k≥1} graded by arity and equipped with partial composition maps

$$\circ_i : P(m) \circ_i P(n) \rightarrow P(m+n-1)$$

for all $m, n \ge 1$ and $1 \le i \le m$.

Graphically, this can be represented by planar trees, called tree monomials:

The set of tree monomials is denoted by $\mathcal{T}(\Sigma)$.

A free operad is spanned by such planar trees, whose inner vertices belong to a graded generating set Σ = (Σ(k))_{k>1}. It is denoted by F(Σ).

A (monomial) context of inner arity k is a planar tree C[□_k] whose inner vertices are in Σ except for one, a symbol □_k of arity k.

For a tree monomial u of arity k, we define the tree monomial C[u] by replacing \Box_k with u:

with x, y_1, \ldots, y_k tree monomials.

An operadic monomial order is a total order ≺ on planar trees such that, for all tree monomials u, u', v, v' and appropriate compositions o_i,

 $u \prec u', v \prec v' \quad \Rightarrow \quad u \circ_i u' \prec v \circ_i v'$

An operadic monomial order is a total order ≺ on planar trees such that, for all tree monomials u, u', v, v' and appropriate compositions o_i,

 $u \prec u', v \prec v' \quad \Rightarrow \quad u \circ_i u' \prec v \circ_i v'$

This monomial order generalizes to rewriting rules in context: C[α] is a planar tree over Σ ∪ {α}. This allows us to compare rewriting rules in context.

- An operadic rewriting system (ORS) is a data (Σ, R) made of a graded set Σ and a binary relation R ⊂ T(Σ) × F(Σ).
- ▶ We consider ORS that are compatible with a monomial order, that is there is a monomial order \prec such that $h \prec s(\alpha)$ for all $\alpha \in R$ and any tree monomial h in $t(\alpha)$.

- An operadic rewriting system (ORS) is a data (Σ, R) made of a graded set Σ and a binary relation R ⊂ T(Σ) × F(Σ).
- ▶ We consider ORS that are compatible with a monomial order, that is there is a monomial order \prec such that $h \prec s(\alpha)$ for all $\alpha \in R$ and any tree monomial h in $t(\alpha)$.
- A reduction of the form $\lambda C[a] + 1_g : \lambda C[s(\alpha)] + g \longrightarrow_R \lambda C[t(\alpha)] + g$ is a:
 - rewriting monomial if $\lambda = 1$ and g = 0.
 - rewriting step if $C[s(\alpha)]$ does not appear as a monomial in g.

- An operadic rewriting system (ORS) is a data (Σ, R) made of a graded set Σ and a binary relation R ⊂ T(Σ) × F(Σ).
- ▶ We consider ORS that are compatible with a monomial order, that is there is a monomial order \prec such that $h \prec s(\alpha)$ for all $\alpha \in R$ and any tree monomial h in $t(\alpha)$.
- A reduction of the form $\lambda C[a] + 1_g : \lambda C[s(\alpha)] + g \longrightarrow_R \lambda C[t(\alpha)] + g$ is a:
 - rewriting monomial if $\lambda = 1$ and g = 0.
 - rewriting step if $C[s(\alpha)]$ does not appear as a monomial in g.
- The data $(\mathcal{F}(\Sigma), \mathbb{R}^{stp})$ defines a terminating ARS.

Confluence of ORS

A branching (resp. local branching) of (Σ, R) is a pair of rewriting paths (resp. rewriting steps) (α, β) of (Σ, R) such that s(α) = s(β).

Local branchings :

Confluence of ORS

- A branching (resp. local branching) of (Σ, R) is a pair of rewriting paths (resp. rewriting steps) (α, β) of (Σ, R) such that s(α) = s(β).
- Local branchings :

- Critical branching lemma: An ORS (Σ, R) compatible with ≺ is locally confluent if and only if its critical branchings are confluent.
- One can furthermore restrict the set of branchings to consider: essential branchings are "atomic" critical branchings.
- Theorem (Malbos-R. '21): An ORS (Σ, R) compatible with ≺ is locally confluent if and only if its essential branchings are confluent.

III. F4 completion procedure for non-symmetric operads

The general procedure is as follows:

```
      Input: A set R of rules of a terminating rewriting system.

      Set R' := R.

      Let C be the set of critical branchings of R'.

      while C \neq \emptyset do

      Select a subset B of branchings in C, and remove them from C.

      Add rewriting rules to R' to make the non-confluent branchings of B confluent.

      Update C with critical branchings induced by the new rules.
```

Output: A set R' of rules of a confluent rewriting system.

We study two points:

- Instead of critical branchings, we can choose any confluence obstruction map.
- Choosing a non-singleton subset for B implies parallel completion of R'.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent \Leftrightarrow X is confluent.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence obstruction map when, for every terminating ORS X,

X is CO(X)-confluent \Leftrightarrow X is confluent.

- A "good" confluence obstruction map is a **confluence generating set**.
 - For example, critical branching lemma states that critical branchings form a confluence obstruction map.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence obstruction map when, for every terminating ORS X,

X is $\mathcal{CO}(X)$ -confluent \Leftrightarrow X is confluent.

- A "good" confluence obstruction map is a confluence generating set.
 - For example, critical branching lemma states that critical branchings form a confluence obstruction map.
- A set B of branchings of an ORS X is confluence-generating if, for any branching (f, g) of X, there exist
 - branchings $(f_1, g_1), \ldots, (f_n, g_n)$, which are additive, multiplicative, or in B,
 - rewriting paths f' and g',
 - contexts C_1, \ldots, C_n ,

such that $f = C_1[f_1] \cdot f'$, $g = C_n[g_n] \cdot g'$, and for all $1 \le i \le n-1$, $C_i[g_i] = C_{i+1}[f_{i+1}]$.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence obstruction map when, for every terminating ORS X,

X is $\mathcal{CO}(X)$ -confluent \Leftrightarrow X is confluent.

- A "good" confluence obstruction map is a confluence generating set.
 - For example, critical branching lemma states that critical branchings form a confluence obstruction map.
- A set B of branchings of an ORS X is confluence-generating if, for any branching (f, g) of X, there exist
 - branchings $(f_1, g_1), \ldots, (f_n, g_n)$, which are additive, multiplicative, or in B,
 - rewriting paths f' and g',
 - contexts C_1, \ldots, C_n ,

such that $f = C_1[f_1] \cdot f'$, $g = C_n[g_n] \cdot g'$, and for all $1 \le i \le n-1$, $C_i[g_i] = C_{i+1}[f_{i+1}]$.

The essential branchings form a smaller confluence generating set: this is what we will use.

In 1995, Faugère introduced a procedure called **F4** to parallelize the completion of branchings for polynomial rings.

At each iteration: select a subset of branchings *B* following a selection strategy S.

In 1995, Faugère introduced a procedure called **F4** to parallelize the completion of branchings for polynomial rings.

- At each iteration: select a subset of branchings *B* following a selection strategy S.
- Calculate the list of rewriting monomials that appear in the reduction of the selected branchings:

```
Input: An ORS (\Sigma, R) compatible with \prec, a list of branchings B, a reduction strategy \sigma.
Set R' := \bigcup_{(f,g) \in B} \{f,g\}.
Set T := \bigcup_{f \in R'} \operatorname{supp}(t(f)).
while T \neq \emptyset do
Select a monomial u in T.
if \sigma(u) is not an identity then
Add the rewriting monomial \sigma(u) to R'.
Add \operatorname{supp}(t(\sigma(u))) to T.
```

Output: A list of rewriting monomials R'.

In 1995, Faugère introduced a procedure called **F4** to parallelize the completion of branchings for polynomial rings.

- At each iteration: select a subset of branchings *B* following a selection strategy S.
- Calculate the list of rewriting monomials that appear in the reduction of the selected branchings:

```
Input: An ORS (\Sigma, R) compatible with \prec, a list of branchings B, a reduction strategy \sigma.
Set R' := \bigcup_{f,g) \in B} \{f,g\}.
Set T := \bigcup_{f \in R'} \operatorname{supp}(t(f)).
while T \neq \emptyset do
Select a monomial u in T.
if \sigma(u) is not an identity then
Add the rewriting monomial \sigma(u) to R'.
Add \operatorname{supp}(t(\sigma(u))) to T.
```

Output: A list of rewriting monomials R'.

• Construct a matrix $M_{R'}$ whose rows are the rewriting monomials of R', written in the basis of tree monomials that occur.

In 1995, Faugère introduced a procedure called **F4** to parallelize the completion of branchings for polynomial rings.

- At each iteration: select a subset of branchings *B* following a selection strategy S.
- Calculate the list of rewriting monomials that appear in the reduction of the selected branchings:

```
Input: An ORS (\Sigma, R) compatible with \prec, a list of branchings B, a reduction strategy \sigma.
Set R' := \bigcup_{(f,g) \in B} \{f,g\}.
Set T := \bigcup_{f \in R'} \operatorname{supp}(t(f)).
while T \neq \emptyset do
Select a monomial u in T.
if \sigma(u) is not an identity then
Add the rewriting monomial \sigma(u) to R'.
Add \operatorname{supp}(t(\sigma(u))) to T.
```

Output: A list of rewriting monomials R'.

- Construct a matrix $M_{R'}$ whose rows are the rewriting monomials of R', written in the basis of tree monomials that occur.
- Reduce M_{R'} to its row echelon form: the rows whose leading monomials are not sources of rewriting rules in R' are the new rules that we add to R'.

In summary: we have parametrized the completion procedure by a confluence obstruction map CO, a selection strategy S.

Input: A set *R* of rules of a terminating rewriting system. Set R' := R. Let C := CO(R'). while $C \neq \emptyset$ do Select B := S(C), and remove them from *C*. Following F4, add rewriting rules to *R'* to make the non-confluent branchings of *B* confluent. Update *C* with the branchings of CO(R') induced by the new rules.

Output: A set R' of rules of a confluent rewriting system.

IV. Case study: the anti-associative operad

Consider the following ORS that presents the anti-associative operad:

$$X := \left\langle x \in \Sigma(2) \middle| \begin{array}{ccc} 1 & 2 & 2 & 3 \\ & & \swarrow & 3 \\ & & & \chi \\ & & & \chi \\ & & & \chi \end{array} \right\rangle.$$

We study the execution of our completion procedure with:

- 1. the confluence obstruction map that selects essential branchings,
- 2. the selection strategy that selects the branchings of lowest weight,
- 3. the path-lexicographic monomial order ≺,
- 4. the reduction strategy σ given by taking the smallest rewriting monomial for the context path-lexicographic order defined in [Malbos-R. 2021].

Case study: antiassociative operad

- First iteration: we select the only essential branching $(f \circ_1 x, x \circ_1 f)$.
- We obtain the list of rewriting monomials

$$R' = \{x \circ_1 f, f \circ_2 x, x \circ_2 f, f \circ_1 x, f \circ_3 x\}.$$

The matrix $M_{R'}$ is of the form

Row reduction gives 1s on the diagonal; we add one rewriting rule g : x ∘₂ (x ∘₂ x) → 0 to the ORS.

Case study: associative operad

Second iteration: we select all five essential branchings

 $P := \{ (f \circ_2 (x \circ_2 x), x \circ_1 g), (f \circ_3 (x \circ_2 x), g \circ_1 x), (x \circ_2 (f \circ_3 x), g \circ_2 x), (x \circ_2 (x \circ_2 f), g \circ_3 x), (x \circ_2 g, g \circ_4 x) \}.$

The matrix M_{R'} is

- Each column corresponds to the leading monomial of a rewriting rule in R', so there are no new rewriting rules.
- The procedure terminates and the final convergent presentation is

$$\left\langle x \in X(2) \middle| \begin{array}{cccc} 1 & 2 & 2 & 3 & -4 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

We have improved the completion procedure for non-symmetric operads in two ways:

- by reducing the number of branchings to be completed,
- by parallelizing the procedure.

And now ...

- Investigate better choices for the confluence obstruction map.
- Apply this completion procedure to other monoidal structures, such as properads.
- Interpret completion modulo the linear structure.

Thank you !

Essential branchings

- Let us fix an ORS (Σ, R) and a monomial order \prec on $\mathcal{T}(\Sigma)$.
- A monomial order on $\mathcal{T}(\Sigma \cup \{\Box_k\}_{k \ge 1})$ induces a monomial order on contexts of $\mathcal{F}(\Sigma)$.

Given

- a monomial order \prec on $\mathcal{T}(\Sigma)$,
- a monomial order on contexts,
- a total order < on R,</p>

we define the rewriting monomial order \prec_{rm} on the set of rewriting monomials by setting $C[\alpha] \prec_{rm} D[\beta]$ iff

- $C[s(\alpha)] \prec D[s(\beta)]$, or
- $C[s(\alpha)] = D[s(\beta)]$ and $C \prec D$,
- $C[s(\alpha)] = D[s(\beta)], C = D \text{ and } \alpha < \beta.$
- An essential branching for (Σ, R) is a critical branching $(C[\alpha], D[\beta])$ s.t. $C[\alpha] \prec_{rm} D[\beta]$ and they are consecutive for this order, i.e. there does not exist a rewriting monomial $E[\gamma]$ such that

 $C[\alpha] \prec_{\mathsf{rm}} E[\gamma] \prec_{\mathsf{rm}} D[\beta].$