
Completion of operadic rewriting systems
by Gaussian elimination

Benjamin Dupont - Philippe Malbos - Isaac Ren

International Workshop on Confluence 2021

July 23rd, 2021

1/24



Outline

I. Introduction and motivation

II. Rewriting in non-symmetric operads

III. F4 completion procedure for non-symmetric operads

IV. Case study: the anti-associative operad

2/24



I. Introduction and motivation

3/24



Elimination theory

I Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

I Solve decision problems, e.g. the word problem.

I Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

I Methods to solve systems of polynomial equations.

I This latter has been developed in elimination theory.

I Gaussian elimination is used to solve linear systems by eliminating indeterminates.

I Gröbner bases give methods to solve non-linear systems by elimination.

I Objective: Compute Gröbner bases by completion of a set of polynomials.

I Gröbner bases are confluent linear rewriting systems compatible with a monomial order.

I Computing a Gröbner basis is equivalent to completing a linear rewriting system.

4/24



Elimination theory

I Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

I Solve decision problems, e.g. the word problem.

I Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

I Methods to solve systems of polynomial equations.

I This latter has been developed in elimination theory.

I Gaussian elimination is used to solve linear systems by eliminating indeterminates.

I Gröbner bases give methods to solve non-linear systems by elimination.

I Objective: Compute Gröbner bases by completion of a set of polynomials.

I Gröbner bases are confluent linear rewriting systems compatible with a monomial order.

I Computing a Gröbner basis is equivalent to completing a linear rewriting system.

4/24



Elimination theory

I Algebraic rewriting : study of presentations of algebraic structures by generators and
oriented relations.

I Solve decision problems, e.g. the word problem.

I Symbolic computation methods: homological invariants, resolutions, cofibrant replacements.

I Methods to solve systems of polynomial equations.

I This latter has been developed in elimination theory.

I Gaussian elimination is used to solve linear systems by eliminating indeterminates.

I Gröbner bases give methods to solve non-linear systems by elimination.

I Objective: Compute Gröbner bases by completion of a set of polynomials.

I Gröbner bases are confluent linear rewriting systems compatible with a monomial order.

I Computing a Gröbner basis is equivalent to completing a linear rewriting system.

4/24



Convergence and Gröbner bases

I Let X be an alphabet, and X∗ be the free monoid on X .

I Fix a monomial order ≺ on X∗, that is a well founded total order such that u ≺ v implies
wuw ′ ≺ wvw ′ for any w ,w ′ in X∗.

I Any polynomial u on the variables of X admits a unique leading monomial, denoted by
lm(u). It admits a leading coefficient lc(u).

I A Gröbner basis for an ideal I generated by a set R of relations compatible with ≺ is a
subset G of I such that

〈lm(I )〉 = 〈lm(G)〉

I Theorem : A subset G of I is a Gröbner basis if and only if the rewriting system −→G

whose rules are
lm(u) −→G lm(u)−

1
lc(u)

u

for each u in G is convergent.

5/24



Convergence and Gröbner bases

I Let X be an alphabet, and X∗ be the free monoid on X .

I Fix a monomial order ≺ on X∗, that is a well founded total order such that u ≺ v implies
wuw ′ ≺ wvw ′ for any w ,w ′ in X∗.

I Any polynomial u on the variables of X admits a unique leading monomial, denoted by
lm(u). It admits a leading coefficient lc(u).

I A Gröbner basis for an ideal I generated by a set R of relations compatible with ≺ is a
subset G of I such that

〈lm(I )〉 = 〈lm(G)〉

I Theorem : A subset G of I is a Gröbner basis if and only if the rewriting system −→G

whose rules are
lm(u) −→G lm(u)−

1
lc(u)

u

for each u in G is convergent.

5/24



Convergence and Gröbner bases

I Let X be an alphabet, and X∗ be the free monoid on X .

I Fix a monomial order ≺ on X∗, that is a well founded total order such that u ≺ v implies
wuw ′ ≺ wvw ′ for any w ,w ′ in X∗.

I Any polynomial u on the variables of X admits a unique leading monomial, denoted by
lm(u). It admits a leading coefficient lc(u).

I A Gröbner basis for an ideal I generated by a set R of relations compatible with ≺ is a
subset G of I such that

〈lm(I )〉 = 〈lm(G)〉

I Theorem : A subset G of I is a Gröbner basis if and only if the rewriting system −→G

whose rules are
lm(u) −→G lm(u)−

1
lc(u)

u

for each u in G is convergent.

5/24



Convergence and Gröbner bases

I Let X be an alphabet, and X∗ be the free monoid on X .

I Fix a monomial order ≺ on X∗, that is a well founded total order such that u ≺ v implies
wuw ′ ≺ wvw ′ for any w ,w ′ in X∗.

I Any polynomial u on the variables of X admits a unique leading monomial, denoted by
lm(u). It admits a leading coefficient lc(u).

I A Gröbner basis for an ideal I generated by a set R of relations compatible with ≺ is a
subset G of I such that

〈lm(I )〉 = 〈lm(G)〉

I Theorem : A subset G of I is a Gröbner basis if and only if the rewriting system −→G

whose rules are
lm(u) −→G lm(u)−

1
lc(u)

u

for each u in G is convergent.

5/24



Linear rewriting

I Linear rewriting in algebra:

I for commutative algebras, Janet ’20, Buchberger ’65,

I for associative algebras, Bokut ’76, Bergman ’78, Mora ’94,

I for operads, Dotsenko-Khoroshkin ’2010, Malbos-Ren ’2021,

I Improved completion procedures for Gröbner bases of commutative algebras, e.g.

I Buchberger’s syzygy criterion in 1979,

I Faugère F4 and F5 algorithms in 1999 and 2002.

I These procedures are based on two principles:

I eliminate non-necessary branchings, e.g. orthogonal branchings,

I eliminate redundant critical branchings using syzygies.

I These approaches have been studied in the case of non-commutative algebras, Xiu ’12,
Chenavier ’19, Hofstadler ’20.

I Objective: Extend these constructions for the case of non-symmetric operads.

6/24



Linear rewriting

I Linear rewriting in algebra:

I for commutative algebras, Janet ’20, Buchberger ’65,

I for associative algebras, Bokut ’76, Bergman ’78, Mora ’94,

I for operads, Dotsenko-Khoroshkin ’2010, Malbos-Ren ’2021,

I Improved completion procedures for Gröbner bases of commutative algebras, e.g.

I Buchberger’s syzygy criterion in 1979,

I Faugère F4 and F5 algorithms in 1999 and 2002.

I These procedures are based on two principles:

I eliminate non-necessary branchings, e.g. orthogonal branchings,

I eliminate redundant critical branchings using syzygies.

I These approaches have been studied in the case of non-commutative algebras, Xiu ’12,
Chenavier ’19, Hofstadler ’20.

I Objective: Extend these constructions for the case of non-symmetric operads.

6/24



Linear rewriting

I Linear rewriting in algebra:

I for commutative algebras, Janet ’20, Buchberger ’65,

I for associative algebras, Bokut ’76, Bergman ’78, Mora ’94,

I for operads, Dotsenko-Khoroshkin ’2010, Malbos-Ren ’2021,

I Improved completion procedures for Gröbner bases of commutative algebras, e.g.

I Buchberger’s syzygy criterion in 1979,

I Faugère F4 and F5 algorithms in 1999 and 2002.

I These procedures are based on two principles:

I eliminate non-necessary branchings, e.g. orthogonal branchings,

I eliminate redundant critical branchings using syzygies.

I These approaches have been studied in the case of non-commutative algebras, Xiu ’12,
Chenavier ’19, Hofstadler ’20.

I Objective: Extend these constructions for the case of non-symmetric operads.

6/24



Linear rewriting

I Linear rewriting in algebra:

I for commutative algebras, Janet ’20, Buchberger ’65,

I for associative algebras, Bokut ’76, Bergman ’78, Mora ’94,

I for operads, Dotsenko-Khoroshkin ’2010, Malbos-Ren ’2021,

I Improved completion procedures for Gröbner bases of commutative algebras, e.g.

I Buchberger’s syzygy criterion in 1979,

I Faugère F4 and F5 algorithms in 1999 and 2002.

I These procedures are based on two principles:

I eliminate non-necessary branchings, e.g. orthogonal branchings,

I eliminate redundant critical branchings using syzygies.

I These approaches have been studied in the case of non-commutative algebras, Xiu ’12,
Chenavier ’19, Hofstadler ’20.

I Objective: Extend these constructions for the case of non-symmetric operads.

6/24



II. Rewriting in non-symmetric operads

7/24



Non-symmetric operads

I A (non-symmetric) operad is a collection of vector spaces (P(k))k≥1 graded by arity and
equipped with partial composition maps

◦i : P(m) ◦i P(n)→ P(m + n − 1)

for all m, n ≥ 1 and 1 ≤ i ≤ m.

I Graphically, this can be represented by planar trees, called tree monomials:

µ

1 · · · i · · · m
◦i

ν

1 · · · n
7→

µ

1 · · · ν

i · · · i + n − 1

· · · m + n − 1 .

The set of tree monomials is denoted by T (Σ).

I A free operad is spanned by such planar trees, whose inner vertices belong to a graded
generating set Σ = (Σ(k))k≥1. It is denoted by F(Σ).

8/24



Non-symmetric operads

I A (non-symmetric) operad is a collection of vector spaces (P(k))k≥1 graded by arity and
equipped with partial composition maps

◦i : P(m) ◦i P(n)→ P(m + n − 1)

for all m, n ≥ 1 and 1 ≤ i ≤ m.

I Graphically, this can be represented by planar trees, called tree monomials:

µ

1 · · · i · · · m
◦i

ν

1 · · · n
7→

µ

1 · · · ν

i · · · i + n − 1

· · · m + n − 1 .

The set of tree monomials is denoted by T (Σ).

I A free operad is spanned by such planar trees, whose inner vertices belong to a graded
generating set Σ = (Σ(k))k≥1. It is denoted by F(Σ).

8/24



Non-symmetric operads

I A (non-symmetric) operad is a collection of vector spaces (P(k))k≥1 graded by arity and
equipped with partial composition maps

◦i : P(m) ◦i P(n)→ P(m + n − 1)

for all m, n ≥ 1 and 1 ≤ i ≤ m.

I Graphically, this can be represented by planar trees, called tree monomials:

µ

1 · · · i · · · m
◦i

ν

1 · · · n
7→

µ

1 · · · ν

i · · · i + n − 1

· · · m + n − 1 .

The set of tree monomials is denoted by T (Σ).

I A free operad is spanned by such planar trees, whose inner vertices belong to a graded
generating set Σ = (Σ(k))k≥1. It is denoted by F(Σ).

8/24



Contexts

I A (monomial) context of inner arity k is a planar tree C [�k ] whose inner vertices are in
Σ except for one, a symbol �k of arity k.

I For a tree monomial u of arity k, we define the tree monomial C [u] by replacing �k with u:

x

�k

y1 · · · yk

 
x
u

y1 · · · yk
,

with x , y1, . . . , yk tree monomials.

9/24



Monomial orders for operads

I An operadic monomial order is a total order ≺ on planar trees such that, for all tree
monomials u, u′, v , v ′ and appropriate compositions ◦i ,

u ≺ u′, v ≺ v ′ ⇒ u ◦i u′ ≺ v ◦i v ′

I This monomial order generalizes to rewriting rules in context: C [α] is a planar tree over
Σ ∪ {α}. This allows us to compare rewriting rules in context.

10/24



Monomial orders for operads

I An operadic monomial order is a total order ≺ on planar trees such that, for all tree
monomials u, u′, v , v ′ and appropriate compositions ◦i ,

u ≺ u′, v ≺ v ′ ⇒ u ◦i u′ ≺ v ◦i v ′

I This monomial order generalizes to rewriting rules in context: C [α] is a planar tree over
Σ ∪ {α}. This allows us to compare rewriting rules in context.

10/24



Operadic rewriting systems (ORS)

I An operadic rewriting system (ORS) is a data (Σ,R) made of a graded set Σ and a
binary relation R ⊂ T (Σ)×F(Σ).

I We consider ORS that are compatible with a monomial order, that is there is a monomial
order ≺ such that h ≺ s(α) for all α ∈ R and any tree monomial h in t(α).

I A reduction of the form λC [a] + 1g : λC [s(α)] + g −→R λC [t(α)] + g is a:

I rewriting monomial if λ = 1 and g = 0.

I rewriting step if C [s(α)] does not appear as a monomial in g .

I The data (F(Σ),Rstp) defines a terminating ARS.

11/24



Operadic rewriting systems (ORS)

I An operadic rewriting system (ORS) is a data (Σ,R) made of a graded set Σ and a
binary relation R ⊂ T (Σ)×F(Σ).

I We consider ORS that are compatible with a monomial order, that is there is a monomial
order ≺ such that h ≺ s(α) for all α ∈ R and any tree monomial h in t(α).

I A reduction of the form λC [a] + 1g : λC [s(α)] + g −→R λC [t(α)] + g is a:

I rewriting monomial if λ = 1 and g = 0.

I rewriting step if C [s(α)] does not appear as a monomial in g .

I The data (F(Σ),Rstp) defines a terminating ARS.

11/24



Operadic rewriting systems (ORS)

I An operadic rewriting system (ORS) is a data (Σ,R) made of a graded set Σ and a
binary relation R ⊂ T (Σ)×F(Σ).

I We consider ORS that are compatible with a monomial order, that is there is a monomial
order ≺ such that h ≺ s(α) for all α ∈ R and any tree monomial h in t(α).

I A reduction of the form λC [a] + 1g : λC [s(α)] + g −→R λC [t(α)] + g is a:

I rewriting monomial if λ = 1 and g = 0.

I rewriting step if C [s(α)] does not appear as a monomial in g .

I The data (F(Σ),Rstp) defines a terminating ARS.

11/24



Confluence of ORS

I A branching (resp. local branching) of (Σ,R) is a pair of rewriting paths (resp. rewriting
steps) (α, β) of (Σ,R) such that s(α) = s(β).

I Local branchings :

additive multiplicative intersecting critical

+

I Critical branching lemma: An ORS (Σ,R) compatible with ≺ is locally confluent if and
only if its critical branchings are confluent.

I One can furthermore restrict the set of branchings to consider: essential branchings are
“atomic” critical branchings.

I Theorem (Malbos-R. ’21): An ORS (Σ,R) compatible with ≺ is locally confluent if and
only if its essential branchings are confluent.

12/24



Confluence of ORS

I A branching (resp. local branching) of (Σ,R) is a pair of rewriting paths (resp. rewriting
steps) (α, β) of (Σ,R) such that s(α) = s(β).

I Local branchings :

additive multiplicative intersecting critical

+

I Critical branching lemma: An ORS (Σ,R) compatible with ≺ is locally confluent if and
only if its critical branchings are confluent.

I One can furthermore restrict the set of branchings to consider: essential branchings are
“atomic” critical branchings.

I Theorem (Malbos-R. ’21): An ORS (Σ,R) compatible with ≺ is locally confluent if and
only if its essential branchings are confluent.

12/24



III. F4 completion procedure for

non-symmetric operads

13/24



Gröbner basis completion procedures

I The general procedure is as follows:

Input: A set R of rules of a terminating rewriting system.
Set R′ := R.
Let C be the set of critical branchings of R′.
while C 6= ∅ do

Select a subset B of branchings in C, and remove them from C.
Add rewriting rules to R′ to make the non-confluent branchings of B confluent.
Update C with critical branchings induced by the new rules.

Output: A set R′ of rules of a confluent rewriting system.

We study two points:

I Instead of critical branchings, we can choose any confluence obstruction map.

I Choosing a non-singleton subset for B implies parallel completion of R′.

14/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

I A map CO that associates to every ORS X a set of branchings CO(X ) of X is a
confluence obstruction map when, for every terminating ORS X ,

X is CO(X )-confluent ⇔ X is confluent.

I A “good” confluence obstruction map is a confluence generating set.
I For example, critical branching lemma states that critical branchings form a confluence

obstruction map.

I A set B of branchings of an ORS X is confluence-generating if, for any branching (f , g)
of X , there exist
I branchings (f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B,
I rewriting paths f ′ and g ′,
I contexts C1, . . . ,Cn,

such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 ≤ i ≤ n − 1, Ci [gi ] = Ci+1[fi+1].

I The essential branchings form a smaller confluence generating set: this is what we will use.

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

I A map CO that associates to every ORS X a set of branchings CO(X ) of X is a
confluence obstruction map when, for every terminating ORS X ,

X is CO(X )-confluent ⇔ X is confluent.

I A “good” confluence obstruction map is a confluence generating set.
I For example, critical branching lemma states that critical branchings form a confluence

obstruction map.

I A set B of branchings of an ORS X is confluence-generating if, for any branching (f , g)
of X , there exist
I branchings (f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B,
I rewriting paths f ′ and g ′,
I contexts C1, . . . ,Cn,

such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 ≤ i ≤ n − 1, Ci [gi ] = Ci+1[fi+1].

I The essential branchings form a smaller confluence generating set: this is what we will use.

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

I A map CO that associates to every ORS X a set of branchings CO(X ) of X is a
confluence obstruction map when, for every terminating ORS X ,

X is CO(X )-confluent ⇔ X is confluent.

I A “good” confluence obstruction map is a confluence generating set.
I For example, critical branching lemma states that critical branchings form a confluence

obstruction map.

I A set B of branchings of an ORS X is confluence-generating if, for any branching (f , g)
of X , there exist
I branchings (f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B,
I rewriting paths f ′ and g ′,
I contexts C1, . . . ,Cn,

such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 ≤ i ≤ n − 1, Ci [gi ] = Ci+1[fi+1].

I The essential branchings form a smaller confluence generating set: this is what we will use.

15/24



Confluence obstruction map

Idea: if the branchings of the confluence obstruction map are confluent, then the entire
rewriting system is confluent.

I A map CO that associates to every ORS X a set of branchings CO(X ) of X is a
confluence obstruction map when, for every terminating ORS X ,

X is CO(X )-confluent ⇔ X is confluent.

I A “good” confluence obstruction map is a confluence generating set.
I For example, critical branching lemma states that critical branchings form a confluence

obstruction map.

I A set B of branchings of an ORS X is confluence-generating if, for any branching (f , g)
of X , there exist
I branchings (f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B,
I rewriting paths f ′ and g ′,
I contexts C1, . . . ,Cn,

such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 ≤ i ≤ n − 1, Ci [gi ] = Ci+1[fi+1].

I The essential branchings form a smaller confluence generating set: this is what we will use.

15/24



Parallel completion

In 1995, Faugère introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

I At each iteration: select a subset of branchings B following a selection strategy S.

I Calculate the list of rewriting monomials that appear in the reduction of the selected
branchings:

Input: An ORS (Σ,R) compatible with ≺, a list of branchings B, a reduction strategy σ.
Set R′ := ∪(f ,g)∈B{f , g}.
Set T := ∪f∈R′ supp(t(f )).
while T 6= ∅ do

Select a monomial u in T .
if σ(u) is not an identity then

Add the rewriting monomial σ(u) to R′.
Add supp(t(σ(u))) to T .

Output: A list of rewriting monomials R′.

I Construct a matrix MR′ whose rows are the rewriting monomials of R′, written in the basis
of tree monomials that occur.

I Reduce MR′ to its row echelon form: the rows whose leading monomials are not sources of
rewriting rules in R′ are the new rules that we add to R′.

16/24



Parallel completion

In 1995, Faugère introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

I At each iteration: select a subset of branchings B following a selection strategy S.
I Calculate the list of rewriting monomials that appear in the reduction of the selected

branchings:

Input: An ORS (Σ,R) compatible with ≺, a list of branchings B, a reduction strategy σ.
Set R′ := ∪(f ,g)∈B{f , g}.
Set T := ∪f∈R′ supp(t(f )).
while T 6= ∅ do

Select a monomial u in T .
if σ(u) is not an identity then

Add the rewriting monomial σ(u) to R′.
Add supp(t(σ(u))) to T .

Output: A list of rewriting monomials R′.

I Construct a matrix MR′ whose rows are the rewriting monomials of R′, written in the basis
of tree monomials that occur.

I Reduce MR′ to its row echelon form: the rows whose leading monomials are not sources of
rewriting rules in R′ are the new rules that we add to R′.

16/24



Parallel completion

In 1995, Faugère introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

I At each iteration: select a subset of branchings B following a selection strategy S.
I Calculate the list of rewriting monomials that appear in the reduction of the selected

branchings:

Input: An ORS (Σ,R) compatible with ≺, a list of branchings B, a reduction strategy σ.
Set R′ := ∪(f ,g)∈B{f , g}.
Set T := ∪f∈R′ supp(t(f )).
while T 6= ∅ do

Select a monomial u in T .
if σ(u) is not an identity then

Add the rewriting monomial σ(u) to R′.
Add supp(t(σ(u))) to T .

Output: A list of rewriting monomials R′.

I Construct a matrix MR′ whose rows are the rewriting monomials of R′, written in the basis
of tree monomials that occur.

I Reduce MR′ to its row echelon form: the rows whose leading monomials are not sources of
rewriting rules in R′ are the new rules that we add to R′.

16/24



Parallel completion

In 1995, Faugère introduced a procedure called F4 to parallelize the completion of branchings
for polynomial rings.

I At each iteration: select a subset of branchings B following a selection strategy S.
I Calculate the list of rewriting monomials that appear in the reduction of the selected

branchings:

Input: An ORS (Σ,R) compatible with ≺, a list of branchings B, a reduction strategy σ.
Set R′ := ∪(f ,g)∈B{f , g}.
Set T := ∪f∈R′ supp(t(f )).
while T 6= ∅ do

Select a monomial u in T .
if σ(u) is not an identity then

Add the rewriting monomial σ(u) to R′.
Add supp(t(σ(u))) to T .

Output: A list of rewriting monomials R′.

I Construct a matrix MR′ whose rows are the rewriting monomials of R′, written in the basis
of tree monomials that occur.

I Reduce MR′ to its row echelon form: the rows whose leading monomials are not sources of
rewriting rules in R′ are the new rules that we add to R′.

16/24



Improved completion procedure

I In summary: we have parametrized the completion procedure by a confluence obstruction
map CO, a selection strategy S.

Input: A set R of rules of a terminating rewriting system.
Set R′ := R.
Let C := CO(R′).
while C 6= ∅ do

Select B := S(C), and remove them from C.
Following F4, add rewriting rules to R′ to make the non-confluent branchings of B
confluent.

Update C with the branchings of CO(R′) induced by the new rules.

Output: A set R′ of rules of a confluent rewriting system.

17/24



IV. Case study: the anti-associative

operad

18/24



Case study: antiassociative operad

I Consider the following ORS that presents the anti-associative operad:

X :=

〈
x ∈ Σ(2)

∣∣∣∣∣∣∣ f :

x

x

1 2

3 → −

x

1 x

2 3 〉
.

I We study the execution of our completion procedure with:
1. the confluence obstruction map that selects essential branchings,
2. the selection strategy that selects the branchings of lowest weight,
3. the path-lexicographic monomial order ≺,
4. the reduction strategy σ given by taking the smallest rewriting monomial for the context

path-lexicographic order defined in [Malbos-R. 2021].

19/24



Case study: antiassociative operad

I First iteration: we select the only essential branching (f ◦1 x , x ◦1 f ).

I We obtain the list of rewriting monomials

R′ = {x ◦1 f , f ◦2 x , x ◦2 f , f ◦1 x , f ◦3 x}.

I The matrix MR′ is of the form



x
x

x

x
x

x
x

x x
x

x
x

x
x

x

f
x 1 1

x
f 1 1

f
x 1 1

f
x 1 1

x
f 1 1


.

I Row reduction gives 1s on the diagonal; we add one rewriting rule g : x ◦2 (x ◦2 x)→ 0 to
the ORS.

20/24



Case study: associative operad

I Second iteration: we select all five essential branchings

P := {(f ◦2 (x ◦2 x), x ◦1 g), (f ◦3 (x ◦2 x), g ◦1 x), (x ◦2 (f ◦3 x), g ◦2 x),

(x ◦2 (x ◦2 f ), g ◦3 x), (x ◦2 g , g ◦4 x)}.

I The matrix MR′ is



x
x

x
x

x
x x

x

x
x

x
x

x
x

x x

x
x

x
x

x
x

x
x

f
x

x
1 1

f
x

x
1 1

x
f

x
1 1

x
x

f 1 1

x
f
x

1 1

x
g 1

g
x 1

g
x 1

g
x 1

g
x 1

x
g 1


21/24



Case study: associative operad

I Each column corresponds to the leading monomial of a rewriting rule in R′, so there are no
new rewriting rules.

I The procedure terminates and the final convergent presentation is

〈
x ∈ X (2)

∣∣∣∣∣∣∣∣∣∣
f :

x

x

1 2

3 → −

x

1 x

2 3

, g :

x

1 x

2 x

3 4

→ 0

〉
.

22/24



Outlook

We have improved the completion procedure for non-symmetric operads in two ways:

I by reducing the number of branchings to be completed,

I by parallelizing the procedure.

And now...

I Investigate better choices for the confluence obstruction map.

I Apply this completion procedure to other monoidal structures, such as properads.

I Interpret completion modulo the linear structure.

23/24



Thank you !

24/24



Essential branchings

I Let us fix an ORS (Σ,R) and a monomial order ≺ on T (Σ).

I A monomial order on T (Σ ∪ {�k}k≥1) induces a monomial order on contexts of F(Σ).

I Given

I a monomial order ≺ on T (Σ),

I a monomial order on contexts,

I a total order < on R,

we define the rewriting monomial order ≺rm on the set of rewriting monomials by setting
C [α] ≺rm D[β] iff

I C [s(α)] ≺ D[s(β)], or

I C [s(α)] = D[s(β)] and C ≺ D,

I C [s(α)] = D[s(β)], C = D and α < β.

I An essential branching for (Σ,R) is a critical branching (C [α],D[β]) s.t. C [α] ≺rm D[β]

and they are consecutive for this order, i.e. there does not exist a rewriting monomial E [γ]

such that
C [α] ≺rm E [γ] ≺rm D[β].


