Finding bases in linear categories using rewriting.

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

Algebra Seminar, Ottawa



Outline

l. Rewriting theory
Il. String rewriting
Ill. Rewriting in linear 2-categories

IV. Extension to rewriting modulo



I. Rewriting theory



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.

P Consists in orienting the equations.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.

P Consists in orienting the equations.

P> Thue '14: rewriting in semi-groups.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.
P> Thue '14: rewriting in semi-groups.

» Church-Rosser '36: lambda-calculus and beta-reductions.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.
P> Thue '14: rewriting in semi-groups.
» Church-Rosser '36: lambda-calculus and beta-reductions.

P> Newman '42: abstract rewriting.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
terms of overlappings.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
terms of overlappings.

> Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
terms of overlappings.

> Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

P Computation of syzygies, i.e. relations among relations.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
terms of overlappings.

> Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

P Computation of syzygies, i.e. relations among relations.

P Computation of linear bases.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
terms of overlappings.

> Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

P Computation of syzygies, i.e. relations among relations.
P Computation of linear bases.

P Proofs of Koszulity.



Rewriting theory

» Rewriting is a combinatorial theory of equivalence classes.
P Consists in orienting the equations.

Thue '14: rewriting in semi-groups.

Church-Rosser '36: lambda-calculus and beta-reductions.

Newman '42: abstract rewriting.

vV v.yYyy

Knuth-Bendix '70, Nivat '72: completion procedures, characterization of local confluence in
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> Algebraic rewriting: deduce properties of an algebraic structure presented by generators
and relations.

P Computation of syzygies, i.e. relations among relations.
P Computation of linear bases.
P Proofs of Koszulity.

P Computation of free resolutions and cofibrant replacements, Anick '84.
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> A branching (resp. local branching) of (X, R) is:

where f are g rewriting paths (resp. rewriting steps) and u, v, w are in X*.
> A (local) branching is confluent if there exists rewriting paths that close the diagram.

» Theorem (Newman Lemma): If (X, R) is terminating, local confluence is equivalent to
confluence.

> Local branchings are divided into 3 families:
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» Consider M a monoid presented by generators X and relations R"°, i.e.
M ~ X/ =pgn-o,
. . e — R . L _ .
thatis u = v in M iff 4 <> v in X* for representatives U and v of u and v in X*.

» Word problem: given u and v in X*, does u=vin M ?

» Partial answer: Fix an orientation R of rules in R™°. If (X, R) is convergent, this problem
is decidable using the normal form algorithm.

Input : u, v e X*

Result: Boolean u=vin M ?
Reduce v in i ;

Reduce v in ¥ ;

if i = U then

I True

else
| False

end
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> One confluent critical branching.

ya

aaa

§>a

Exemple.X:{s,t}andR:{stsgtst}.s:x | t:l >< i}{ = }{j

» Termination: lexicographic order on s > t.
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Knuth-Bendix completion

Input : (X, R) terminating + termination order >
KB(R) =R ;
Cp := { critical branchings } ;
while C, # () do
Pick (f:u—v,g:u— w)inCp;
Co:=Co\{(f,8)}:
Reduce v in 0 wrt R ;
Reduce w in w wrt R ;
if 0 # W then
if ¥ > W then
| KB(R) :=KB(R)U{a:?— w}
else
| KB(R):=KB(R)U{a:w — 0}
end

else

end
Cp := CpU {critical branchings generated by o }

end
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Knuth-Bendix completion

» This algorithm may not terminate.

> If it does, it returns (X, CB(R)) which is convergent and presents the same monoid.

Example. X = {s, t} and R = {sts = tst} with lexicographic order on s > t,

y sttst y stttst Bty stttstts &

tsttssts

sts B sttsts v sttsttst

$ tstts B¥> tsttss % tsttstst %

» Kapur & Narendran , '85: The monoid B;r does not admit a finite convergent presentation

with 2 generators.
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Knuth-Bendix completion

> X ={s,t,a}and R = {ta > as, st LA a} presents the same monoid.
lexicographic order on s > t > a.

ﬁa/733 y?

aat ~yaa

yas aaas

ﬂl

sasaa

sta Y sast § sasas aata \
\\ \ \ / .
s sas saf saa s3Y = saga ~ da

It terminates for the

aaaf
aaaa < aaast
aaat

saaat > aatat
dat



Knuth-Bendix completion

> X ={s,t,a} and R = {ta % as, st LA a} presents the same monoid. It terminates for the
lexicographic order on s > t > a.

aaaf3
,83/ aa y aat ~vas __ a@aas V<O‘ 7?7 aaaa < aaast
sasaa aaat
sta v sast é sasas aata \
\\ \ \ / saé saaaté)taatat
ai
o sas saf3 saa %Y = saaa ~ da

. " s, .
» The string rewriting system < s, t, a | ta > as , st g a, sas 2 aa , Saa — aat > 1s a
convergent presentation of B;'.



IIl. Rewriting in linear 2-categories



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations

depicted by diagrams.
» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

> relations:
&i& = &i&i
0i&; =0 si|i—jl>1
80y = 8;0; sili—j| >1
92 =0
0i0i410; = 0i410;0i41

£i0i — 01 =1
0i&i — &i410i =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations

depicted by diagrams.
» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

& =

> relations:
&i& = &i&i
0i&; =0 si|i—jl>1
80y = 8;0; sili—j| >1
92 =0
0i0i410; = 0i410;0i41

£i0i — 01 =1
0i&i — &i410i =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

&= + , 0 = . >< ..
1 i n 1 i i+1
> relations:

§i&j = &&i
a,'fj = fja,' si ‘I’ —_]‘ >1
0;0; = 0;0; si|i—j|>1

#2=0 -

0i0i410; = 0i410;0i41 1 i j on N

&0 — 0i€iv1 =1
0i§i — §i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

&= + , 0 = . >< ..
1 i n 1 i i+1
> relations:
&i& = &&i
a,fj = fjé); si ‘f —_/‘ >1
0;0; = 0;0; si|i—j|>1
o7 =0 2 I
0i0i410; = 0i410;0i41 10 i1 n 10 i1 n

&0 — 0i€iv1 =1
0i§i — §i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

§i = + ) 0 = . >< ..
1 i n P i1
> relations:
iki = &éi
0i&; =0 si|i—jl>1
80y = 9;0; sili—j|>1
=0 SN =]
9i0410; = 041010142 10 i1 j j+1on 1 i+1 j j+ion
£i0i — 01 =1
0i&i — €i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations

depicted by diagrams.
» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

6= + . o- >< y
1 i n 1 i i+1 n
> relations:
&i& = &i&i
a,'fj = fja,' si ‘I’ —_]‘ >1
a,-ajzaj@,' Sill‘—j‘>1
92=0 =0
0;0i110; = 0i+10i0j11 1 i i+l o

£i0i — 01 =1
0i&i — €i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations

depicted by diagrams.
» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

&= + , 9; = . >< ..
1 i n 1 i i+1
> relations:
§i&j = &i&i
a,'fj = fja,' si ‘I’ —_]‘ >1
0;0; = 0;0; si|i—j|>1
92 =0 =0
0i0i410; = 0i410;0i41 i1

£i0i — 01 =1
0i&i — €i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

&= + , 9; = . >< ..
1 i n 1 i i+1
> relations:
&i& = &&i
a,'fj = fja,' si ‘I’ —_]‘ >1
0;0; = 0;0; si|i—j|>1 -~
=0
0;0i+10; = 0i+10:0j11 i+l Q2 i1 2

&0 — 0i€iv1 =1
0i§i — §i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

i

1 i n 1 i i+1 n

& =

> relations:
&i&j = &€
a,'fj = fja,' si ‘I’ —_]‘ >1

8;8j=6j8,' si |[i—j]>1 >< :>< +
i i+1 i i+1

82 =0

' P
0;0i110; = 0i+10i0j11
£i0i — i1 =1

0§ — §i+10; =1



Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

& =

1 i n 1 i i+1  n
> relations:
&i&j = &€
a,'fj = fja,' si ‘I’ —_]‘ >1

8;8j=6j8,' si |[i—j]>1 >< 7><
=0

0i0i410; = 0i410;0i41 i i+1 i i+1 it
&0 — 0i€iv1 =1
0i&i — §i+10; =1




Diagrammatic algebras

» Diagrammatic algebra: algebra admitting a presentation by generators and relations
depicted by diagrams.

» Example: For n € N, the nil Hecke algebra N'H, is presented by

P generators & for 1 < i< nand 9; for1 <i < n;

&= + , 0 = . >< ..
1 i n 1 i i+1
> relations:
§i&j = &i&i
a,'fj = fja,' si ‘I’ —_]‘ >1
8,-8]-=6j8,' si |[i—j]>1 >< ><
92 =0
0;0i110; = 0j4+10;0j11 i i+1 i i+1 i
&i0i — 0iiva =1
0i&i — &i410i =1

> We realize these algebras as endomorphism spaces of a linear 2-category.
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» A K-linear strict monoidal category is a category A equipped with

P a tensor product ® : A x A — A which is associative.
P a unit object 1 such that 1 @ A= A= A® 1 for all object of A.
P for any object A,B of A, A(A, B) is a K-vector space.

P composition and tensor products of morphisms are K-bilinear.

> A K-linear 2-category is the data of a 2-category C = (Co,C1,C2) such that:

> for all p, g in C1, C2(p, q) is a K-vector space.

P o and xi-composition of 1-cells are K-bilinear.

» When Co = {x}, these two objects are the same.
objects of A <+ 1-cells of C

morphisms of A <> 2-cells of C

® <> %0, composition of morphisms <+ x1
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String diagrams

> A 2-cell ¢ : p= g with p,g: x — y in a linear 2-category C can be depicted by a string
diagram:

» Compositions:

q*o0q’

'*0' "

pxo p’

» These compositions satisfy the exchange law:




Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph
(P41, Po, so, to), on which we construct the
free 1-category Py .



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py,
that is a set equipped with s1,t1:
Py — P;.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12— 2, { 11— 1}
that is a set equipped with s1,t1:

Py — P;.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12— 2, { 11— 1}
that is a set equipped with s1,t1:

Py — P;.

P> We construct the free 2-category P, on
Pz.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12— 2, { 11— 1}
that is a set equipped with s1,t1:
Py — P;.

> We construct the free 2-category P} on » P; = { diagrams formed by horizontal and

P>. vertical compositions of crossings and dots}



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12 52, { 11— 1}
that is a set equipped with s1,t1:
Py — P;.

> We construct the free 2-category P; on » P = { diagrams formed by horizontal and
P>. vertical compositions of crossings and dots}

P> We construct the free linear 2-category P;‘
on Ps:

P3(x,y) = K[P5 (x,y)]

for any 1-cells x and y in P;.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12— 2, { 11— 1}
that is a set equipped with s1,t1:
Py — P;.
P> We construct the free 2-category P, on » P; = { diagrams formed by horizontal and
Ps. vertical compositions of crossings and dots}
> We construct the free linear 2-category P4 > P! = {K — linear combinations
on Pa: of diagrams in P, }

P3(x,y) = K[P5 (x,y)]

for any 1-cells x and y in P;.



Presentations by linear (3,2)-polygraphs

> Polygraphs (Burroni - Street) are presentations by generators and relations of
higher-dimensional globular strict categories.

P Linear 2-categories are presented by rewriting systems called linear (3, 2)-polygraphs.

» A 1-polygraph is a directed graph » Po = {+},Pr={1},% =+,P; =N,
(P41, Po, so, to), on which we construct the
free 1-category Py .

» We consider a cellular extension P> of Py, > Py ={ >< 12— 2, { 11— 1}
that is a set equipped with s1,t1:
Py — P;.
P> We construct the free 2-category P, on » P; = { diagrams formed by horizontal and
Ps. vertical compositions of crossings and dots}
> We construct the free linear 2-category P4 > P! = {K — linear combinations
on Pa: of diagrams in P, }

i *
Py (x,y) = K[Py(x, )]
for any 1-cells x and y in P;.
» We consider a cellular extension P3 of PZ,

corresponding to an orientation of the
relations.
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Presentations by linear (3,2)-polygraphs

> Example : for the nil Hecke algebras,

P These are exchange laws.

et esE s

» This choice of cellular extension defines a linear (3, 2)-polygraph presenting a

linear 2-category encoding the nil Hecke algebras.

Endc(n) ~ N'H,

» |t is left-monomial, that is each source of a 3-cell is a monomial.
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Linear rewriting

> Restriction of the set of rewritings due to the linear context: if u — v, then —u = —v, and
sov=(utv)—=fu+v—v=u

> A rewriting step of a linear (3, 2)-polygraph is a 3-cell of the form

where o € P3, and the monomial my x1 (m2 *o s2(a) xo m3) *x1 ma does not appear in the
monomial decomposition of u.

» Newman lemma: A terminating linear (3,2)-polygraph is confluent if and only if it is
locally confluent.

» Critical pair lemma: A terminating linear (3, 2)-polygraph is locally confluent if and only
if its critical branchings are confluent.
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> Consider a linear rewriting system on generators x,y, z and rules o : xy — xz and
Bzt — 2yt.

> It has no critical branching.

> Consider the Peiffer branching
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Critical pair lemma fails without termination

> Consider a linear rewriting system on generators x,y, z and rules « : xy — xz and
Bzt — 2yt.

P It has no critical branching.

» Consider the Peiffer branching

4ot 4xpB
2xp 4xyt 4xzt
at + xzt Ozt .. xzt + x8
BN
xyt + xzt xzt + 2xyt
7
xyt + xf3 3xyt gt 4 2xyt
3at 3xzt 6xyt

3x5 6ot
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Critical branchings of linear (3,2)-polygraphs

> A critical branching is a branching on a minimal string diagram.

» There are 3 different forms of critical branchings:

P Regular critical branchings:

s(a)

P Inclusion critical branchings:

C
. I . I
P Right-indexed (also left-indexed, multi-indexed) critical branchings:
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Linear bases from convergence

> P a convergent left-monomial linear (3, 2)-polygraph.

> C the linear 2-category it presents.

» Theorem (Alleaume): For any parallel 1-cells p and q of C, the set of monomials in
normal form for P with 1-source p and 1-target g is a linear basis of C2(p, q).

» Termination: the monomials in normal form span Cz(p, q).

P Confluence: if a 2-cell reduces into two different linear combinations of monomials in normal
form, they are equal by confluence and since P is left-monomial.
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Example: the Khovanov-Lauda-Rouquier (KLR) algebras

> These algebras have been defined in the process of categorifying a quantum group Uq(g)
associated with a symmetrizable Kac-Moody algebra g.

» Let I' be the Dynkin graph of g, and / its set of vertices. Fix:

» anelement V = > v;.i € N[/], ~~ algebra R(V)
iel

> a bilinear form - on Z[/] with values in {0, 1},
> the set Seq(V) of sequences of length m of elements of I', where i appears V; times.

> Example: Seq(2i + j) = {iij, iji, jii}

» Theorem [Khovanov-Lauda '08]: If R= & R(V),
VeN[]

Ko(R — pmod) ~ U, (g)



Presentation of the KLR algebras

> Fori=1ii...im € Seq(V), generators

%

i1 ik im i ik k41 im

Xkji =

> Relations:

i) Foriel,

v) Foriel,
=0
- P =S
ii) Fori,jelsti-j=0,

HaaNl

vi) Fori,j,k €, unlessi=kandi-j=—1,
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Presentation of the KLR algebras

> Fori=1ii...im € Seq(V), generators

%

i1 ik im i ik k41 im

Xk,i = and Tk,i =

> Relations:

i) Foriel,

v) Foriel,
30
i) Forijelsti-j=0, ><3><+

=Ny

i i j

Hatiall

vi) Fori,j,k €I, unlessi=kandi-j=—1,
iii) Fori,jelsti-j=—1,

St -1

i i J i j

iv) Fori,jel, vii) Fori,jelsti-j=-—1,

Ratd Hard Doerde]
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Convergent presentation

» Theorem [D. '17]: This linear (3,2)-polygraph is convergent.
P Termination: the number of crossings decreases and the dots move to the bottom.

P Confluence: exhaustive study of all critical branchings.
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Convergent presentation

» Theorem [D. '17]: This linear (3,2)-polygraph is convergent.
P Termination: the number of crossings decreases and the dots move to the bottom.

P Confluence: exhaustive study of all critical branchings.

S
N

rSdorsd Rdidg W
N T T

» Corollary: Diagrams corresponding to minimal permutations in the Coxeter presentation of

e

the symmetric groups and dots placed at the bottom of each strand give bases of these
algebras.
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Rewriting modulo

» Some structural relations may make the analysis of confluence difficult.

» Example: Adjunction relations in pivotal linear 2-categories. If p is a 1-cell, a left-adjoint of p
is a 1-cell p such that there are 2-cells

b
Mp:1=pxoP, €p:Pprop=1, U , [\p satisfying m_ = m

P P P

P> We rewrite modulo these rules, with a set R of oriented relations and a set E of non-oriented
axioms.

» Three paradigms of rewriting modulo:

P Rewriting with rules in R, but confluence modulo E, Huet '80

R , R
u—>>u > w
E$ ¢E
v—=1Vv > w £REe
R R
u > v
> Rewriting wi . | e
Rewriting with R on E-equivalence classes:
u —= v
R

P Rewriting system modulo: (R, E, S) such that R C S C gRg, Jouannaud-Kirchner '84.



Results

st ., s*
u—:u > w
E E
» Confluence modulo: $ Y
v—=v >



Results

S* S*
u——su > w
E E
» Confluence modulo: $ Y
v —= v/ > w'
s* S*

» Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R, E,S) such that gRg
is terminating, S is confluent modulo E if and only if its critical branchings modulo E of

the form
5*(1) st $*(1) st
u—v > v Uu——sv - To>v
I ET ET(l)\L ET
v v
u—w > w' u’ > w
RH(D) s* s*

are confluent modulo E.



Results

S* S*
u——su > w
E E
» Confluence modulo: $ Y
v —= v/ > w'
s* S*

» Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R, E,S) such that gRg
is terminating, S is confluent modulo E if and only if its critical branchings modulo E of

the form
5*(1) st $*(1) st
u—v > v Uu——sv - To>v
I ET ET(l)\L ET
v v
u—w > w' u’ > w
R*(1) S* s*

are confluent modulo E.

» Theorem [D. '19] Let (R, E, S) be a linear (3, 2)-polygraph modulo and C the category
presented by R]] E, such that S is terminating and confluent modulo E.



Results

S* S*
u——su > w
E E
» Confluence modulo: $ Y
v —= v/ > w'
s* S*

» Theorem [D. - Malbos ’18], Critical pair lemma modulo : For (R, E,S) such that gRg
is terminating, S is confluent modulo E if and only if its critical branchings modulo E of

the form
5*(1) st $*(1) st
u—v > v Uu——sv - To>v
I ET ET(l)\L ET
v v
u—w > w' u’ > w
RH(D) s* s*

are confluent modulo E.

» Theorem [D. '19] Let (R, E, S) be a linear (3, 2)-polygraph modulo and C the category
presented by R]] E, such that S is terminating and confluent modulo E.

Then, for all parallel 1-cells p and g, the set of monomials in the E-normal forms of
monomials in normal form for S gives a basis of C2(p, q).
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Example: The 2-category LR (sly)

> Let LR be the linear 2-category defined by:
> KLRo = X weight lattice of a Kac-Moody algebra,
> KLRy ={e=(e1,...,ep0.)) with g; € {—, +}}.

P> KLR is the set of following generating 2-cells
_ _ _ N _
T X XYY g
+ + ¥

» subject to the following relations:
P> KLR algebras relations for both orientations.

P Bubble relations:

O N 1a, ifn=h—-1 ) O N li, ifn=—-h-1

! A 0 fn<h-1 ' ! 0 ifn<—h—1

h—1+a O/\ > — Z hflﬁklO N Oﬁhf”l forall A € X and a > 0
/=1
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Example: The 2-category KLR(sl,)

> |sotopy relations: m = | = m (‘\JS + em

+ + + + + +

» Quantum relations:

% I Moy % S AP E T )
e A

n

DOHZ Q@f’zg

» Bubble slide relations.



