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Abstract: A method of increasing the efficiency of line 
drawing algorithms by setting additional pixels during loop 
iterations is presented in this paper. This method adds no 
additional costs to the loop. It is applied here to the double- 
step algorithm presented in [15] and later used in [ 141, 
resulting in up to a thirty-three percent reduction in the 
number of iterations and a sixteen percent increase in speed. 
In addition, the code complexity and initialization costs of the 
resulting algorithm remain the same. 
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1. Introduction 

Line drawing algorithms are effectively used to 
determine the points which lie closest to a line segment 
along its major axis, given the segment’s starting and 
ending points. As one may suspect, much attention has 
been devoted to developing efficient line drawing 
algorithms in computer graphics over the years. In 
addition to drawing lines and modeling geometric shapes, 
such as squares, line drawing algorithms are used to 
approximate other shapes such as circles. They are also 
used in ray tracing [lo] and polygon-filling algorithms, as 
well as other applications involving lines. Truly, line 
drawing algorithms are a fundamental topic in the area of 
computer graphics. 

Various algorithms have been presented which 
eliminate or greatly reduce the need to perform 
multiplications and divisions. For instance, the traditional 
Bresenham algorithm [2] performs integer logic on the 
error term with respect to one coordinate as values of the 
other coordinate are incremented. The algorithm in [15] 
performs integer logic to generate line points by instead 
taking a double step increment with respect to one of the 
coordinate axes. Bresenham’s run length slice algorithm 
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[3,4] calculates a slice of movements with respect to a 
particular coordinate axis in each iteration of a loop. Other 
approaches to speeding up the scan-conversion process are 
based on Euclid’s algorithm [6, 71. In addition, the 
properties of discrete line segments have been studied and 
incorporated into algorithms, thereby making them more 
efficient. There are also line drawing algorithms which are 
derivations or variations of these algorithms [S]. 

In this paper, we introduce a method of increasing the 
speed of line drawing algorithms by setting additional 
pixels in the loop iterations. This method is applied to the 
double-step algorithm proposed in [15] and later used in 
[14]. While the double-step algorithm always sets two 
pixels per loop iteration, our algorithm sets either two or 
three pixels per loop iteration. Also, no additional logic is 
needed in the loop, and the amount of the remaining logic 
can be considered the same as that for the double-step 
algorithm. Previous attempts to increase the step sizes 
offered no clear advantages due to the large increases in the 
complexity of the algorithm [l]. It should be noted that 
while this method can result in rather substantial increases 
in speed of the scan-conversion process, the improvement 
is not realized in practice due to the inevitable pixel write 
operations which dominate timewise. Nevertheless, the 
speed of the entire process can be improved somewhat by 
making each stage as fast as possib.@ Furthermore, as 
noted in [14], the bottleneck may well be in scan- 
conversion in future hardware. Before presenting our 
modified algorithm, however, we will first discuss the 
double-step line algorithm in greater detail. 

2. The Double-Step Algorithm 

The double-step algorithm for drawing curves on the 
raster plane is summarized as follows. Letf(x,y) = 0 be a 
two-dimensional curve having a continuous first derivative. 
Assume it is divided into segments which satisfy one of 
the following cases: 

(4 o&,1 (b) I<%<- 

(c) % -m<-<-1 
dx 

(d) -l,$O 
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As in [14] and [15], the discussions in this paper are 
restricted to case (a) since the other cases can be reduced to 
case (a) by swapping x and y and/or changing the 
incremental direction. In addition, only lines having 
integer coordinate values for their starting and ending 
points are considered. These points are denoted as (x0, yo) 
and (xn, y), respectively. The pixels set at the remaining 
grid locations are denoted as (xi, yi), 0 < i c n. When 
setting the pixels of a line on a raster grid (which will have 
starting point (x0, yo) at the lower left comer) where the 
step size in the x direction is two, only four patterns are 
possibb (Figure 1). It was conjectured by Freeman [8,9] 
and proven by Regiori [13] that only two pattern types 
may occur simultaneously: either patterns 1 and 2 (3) or 
patterns 2 (3) and 4 (where 2 (3) is an abbreviation for 
pattern 2 or pattern 3). The possibility of the occurrence of 
a set of patterns depends on whether 0 I dy/dx c l/2 or l/2 
cdy/dx< 1. 

Pattem 1 Pattern 2 

#e #+ 
Pattern 3 Pattern 4 

Figure 1. The four types of double-step patterns. 

In the double-step algorithm, lines are classified 
according to their slopes, as just described. A 
discriminator, Di, is then updated each iteration of a loop 
in which double step sizes in the x direction are taken. 
This discriminator determines that the patterns which 
should be set are as shown below: 

If dyldr < 112 then the algorithm is given by 

Algorithm 1. Let Dl= 4dy - &, al = 4dy, and 
a2 = 4dy - 2dx. For i = 1.2. . . . 

Di+l = 
1 

D;+ al if Di c 0 (pattern 1) 
Di + a2 otherwise (pattern 2 (3)) 

and if dyldx 2 It2 then the algorithm is 

Algorithm 2. Let Dl= 4dy - 3dx, p1 = 4dy - 
2&, and h = 4(dy - dx). For i = 1.2, . . . 

Di+l = Di+Pl if Di < 0 (pattern 2 (3)) 
Di+h otherwise (pattern 4) 

Since the middle pixels which should be set when pattern 1 
(4) occurs is known, the only work that remains is to 
distinguish between patterns 2 and 3. This is performed by 
the following test which results in the pixel corresponding 
to pattern 2 being set if the test is passed and pattern 3 if it 
is not passed: 

if 0 5 dyidx < 112 
if l/2 I dyfak I 1 

The detailed double-step line algorithm is given in Figure 
2. It is shown that the stopping conditions are determined 
by decrementing the x coordinate value of the endpoint if 
dx is odd. Otherwise, an additional pixel would be set 
because two pixels are set in each iteration of the while 
loops. In [14], it is stated that the Pascal implementation 
is approximately twice as fast as Bresenham’s original 
algorithm if pixel I/O is ignored. 

procedure LINE(a1, bl, a2. b2: integer); 
var dx, dy, incrl, incr2, D, x, y, xend, c: integer; 

procedure draw(pattem: integer); 
begin 

case pattern of 
1: +tX; point(x. y); +tx; point(x. y); 
2: +tx; point(x, y); i-l-x; +ty; point(x, y); 
3: +tx; +t-y; poillt(x, y); ++x; point(x, y); 
4: ++x; ++y; point(x, y); +tx; +ky; point(x. y); 
end (case) 

end (draw) 

begin 
dx=a2-al; dy=b2-bl; 
x=al; y=bl; 
if dx is even then begin parity = 0;: xend = a2; end 
else begin parity = 1; xend = a2 - 1; end; 
pint(x. y); 
incr2 = 4*dy - 2*dx; 
if incr2 < 0 then begin 

c = 2*dy; 
(slope is less than l/2) 

incrl = 2*c; 
D=incrl -dx; 
while x o xend do 

if D c 0 then begin 
draw(l); D = D + incrl; end 

else begin 
if D < c then draw(2) else draw(3); 
D=D+incr2; 
end: 

end 
else begin (slope is 2 l/2) 

c = 2*(dy - dx); 
incrl = 2*c; 
D=incrl+dx; 
while x c> xend do 
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If D % 0 then begin 
draw(4); D =D+incrl; end 

else begin 
if D < c then draw(2) else draw(f); 
D=D+incR; 
end; 

end; (if) 
(plot the endpoint if dx is odd) 
if parity = 1 then point(& b2); 

end (LINE} 

Figure 2. The double-step lie algorithm. 

3. The Double- and Triple-Step 
Algorithm 

It is noted in [15] that when patterns 2 and 3 are not 
distinguished from each other, the repetitive loop in the 
double-step algorithm is the same as that in Bresenham’s 
algorithm, with the exception that two pixels are set per 
iteration. As a result, the double-step algorithm loops 
only LMJ times whereas the Bresenham algorithm loops 
dx times, and it can be roughly twice as fast. Therefore, 
the additions, tests, and jumps in the loop that are saved by 
performing fewer iterations can greatly offset the few 
additional initializing operations. Although the double- 
step algorithm is still faster, some of these benefits are 
reduced when patterns 2 and 3 are distinguished from each 
other as a result of the additional comparison(s) and 
jump(s) (see the “if D < c then . ..” portions of the code in 
Figure 2). In this section, we present a double- and triple- 
step algorithm which remedies the problem of the 
additional computations associated with distinguishing 
patterns 2 and 3 by setting an additional pixel under the 
worst case conditions. Setting the additional pixel does not 
add any logic to the loop, and the remaining logic is the 
same as that for the double-step algorithm. 

Pattern 5 Pattern 6 

Figure 3. The two additional pixel patterns of the 
double- and triple-step algorithm. 

3.1. Double and Triple Steps 

We begin our discussion of the double- and triple-step 
algorithm by describing the relationship of pixels at xi and 
Xi+l- If the pixels set at Xi and Xi+1 have the same y 
coordinate value, then a sideways movement occurs from 
Xi. If the pixels set at Xi and Xi+1 do not have the same y 

coordinate value, then a diagonal movement occurs from 
xi. We now make several observations concerning lines 
below (Once again, only lines where 0 I dy/dx 2 1 are 
considered. However, additional observations for the 
remaining lines in the 2-D plane can easily be made): 

Observation 1. If 0 s dyldx c l/2. then it is not 
possible to make two successive diagonal movements. 

Observation 2. If l/2 c dyldx g 1. then it is not 
possible to make two successive sideways movements. 

These observations are easily proven by considering the 
slope of any line in question and are omitted for brevity. 
Previously. the middle pixels in patterns 1 and 4 could be 
determined without any additional computation once the y 
coordinate value of the pixel set at xi+2 was determined. 
From Observation 1. it follows that the pixel at Xi+3 can 
also be determined without any additional computation 
when dy/& c l/2 and pattern 2 occurs. In addition, from 
Observation 2, it follows that the pixel at xi+3 can be 
determined without any additional computation when l/2 c 
dy/dx 2 1 and pattern 3 occurs. Each of these pixel 
patterns will be called patterns 5 and 6, respectively (Figure 
3). Since a third pixel can be set without any additional 
computation in certain circumstances, the double- and 
triple-step algorithm will set three pixels whenever 
possible and will set two pixels in the remaining cases. 

3.2. Updating the Discriminator 

In the double-step algorithm, the two sets of pixel 
patterns possible of occurring together are patterns 1 and 2 
(3) as well as patterns 2 (3) and 4. Since the same 
movements are made in patterns 2 and 3 (although in 
different order), the discriminators for each pattern are 
treated the same. However, in the double- and triple-step 
algorithm, the sets of patterns possible of occurring 
together are patterns 1 and 5 (3) as well as patterns 2 (6) 
and 4. Because the movements associated with patterns 5 
and 3 (as well as 2 and 6) are different, it must now be 
determined how to update the discriminator when pattern 5 
(or 6) occur. 

Earlier, it was shown that the discriminator can be 
defined with respect to steps of size two. As noted in [2], 
the discriminator can also be defined with respect to steps 
of size one: 

D;+I = 
D; + 2dy if 0; C 0 (yi = yi-1) 
D; + 2(dy - dx) otherwise (yi = yi-1 + I) 

It turns out that the discriminator for the double-step 
algorithm is defined and updated in a manner very similar 
to that for the discriminator above. Therefore, letting 
Di = Dl, the new value of the discriminator in the double- 
and triple-step algorithm is defined as: 
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DLl = 0; + (4dy - 2dx) + 2dy 

when pattern 5 occurs. When pattern 6 occurs, the new 
value of the discriminator is defined as: 

or+1 =D;+(4dyG!dx)+2(dy-dx). 

Of court. the discriminator values are updated as before 
when patterns 1, 2, 3, and 4 occur. Therefore, the steps 
taken by the double- and triple-step algorithm are 
summarized as follows: 

If 0 I dyldx I l/2 then the algorithm is given by 

Algorithm 3. Let Di = 4dy - a?, al = 4dy, a2 = 
4dy-2d&anda=2dy. Fori=l,2 ,... 

{ 

0; + a1 if Di < 0 (pattern 1) 
DLI = D;+az+as ifO5D~<a3(pattem5) 

Dj’+a2 if a3 5 D j’ (pattern 3) 

and if 1 I2 < dyldx I I then the algorithm is 

Algorithm 4. Let Di’ = 4dy - 3dx, j31 = 4dy - 
2&, p2 = 4(dy - dx), and & = 2(dy - dx). For i = 1, 
2 ) . . . 

D;+I = 
Dj’+j31 ifDj’<& (pattem2) 
Di+j31+/33 iffi3<Dl<O(pattem6) 
D;+j32 if 0 I 0: (pattern 4) 

3.3. Termination 

Since either two or three pixels will be set in each 
iteration of a loop, the stopping conditions of the loops 
must be determined in a different manner from the double- 
step algorithm. In this section, the termination conditions 
of the double- and triple-step algorithm for the case where 
dy/dx c l/2 will be discussed first. Then the cases where 
dy/dx is greater than l/2 and dy/dx equals l/2 will be 
considered. 

G-2 xn ha-2 +a 

(9 (ii) 

Figure 4. Cases where additional pixels are set by 
the double- and triple-step algorithm. 

When dyldr < 112, the termination conditions are easily 
determined by constructing a loop which stops iterating 
once the pixel at Xn,1 is set. It is followed by an if clause 
which sets the pixel corresponding to the endpoint 
(provided it has not already been set) since the loop either 
sets the correct number of pixels or all the pixels except 
the endpoint. The fact that the loop sets the pixels 
described above is proven by considering all possible cases. 
For instance, if the first pixel to be set in the current 
iteration of the loop is at location Xn-1, then the correct 
number of pixels will be set when pattern l(3) occurs. On 
the other hand, if pattern 5 occurs, an “extra” pixel will be 
set (Figure 4 (i)). However, pattern 5 cannot occur in such 
a situation; since the slope is less than l/2. a sideways 
movement must always be made from x,-l. In the 
remaining cases, either the correct number of pixels are set, 
or more iterations must be performed. 

When l/2 < dyldx 1. 1, a loop and an if clause are 
constructed as before. Once again, it is proven that no 
“extra” pixels are set by considering the different cases 
which are possible. For instance, if the first pixel to be set 
in the current iteration is at location xn-1. the correct 
number of pixels will be set when pattern 4 (2) occurs. On 
the other hand, if pattern 6 occurs, an “extra” pixel will be 
set (Figure 4 (ii)). However, pattern 6 cannot occur in 
such a situation: since the slope is greater than l/2, a 
diagonal movement must always be made from location 
X,-l. The remaining cases are proven using similar 
arguments. Lastly, lines having a slope equal to l/2 are 
now handled by Algorithm 3 since an additional pixel may 
be set when Algorithm 4 processes these lines. The 
calculations performed when determining the termination 
conditions as well as the rest of the steps of the double- and 
triple-step algorithm are shown in detail in Figure 5. 

procedure LJNE(a1. bl. a2. b2: integer); 
var dx. dy. incrl. incr2. incr3. D. x. y. xend. c: integer; 

procedure draw(pattem: integer); 
begin 

case pattern of 
1: +tx; point(x, y); +tx; point(x, y); 
2: +tx; point(x, y); ++x; tty; point(x, y); 
3: +tx; ++y; point(x, y); +I-x; point(x, y); 
4: ++x; ++y; point(x. y); +tx; *y; point(x, y); 
5: *x; point(x, y); ++x; ++y; point(x. y); 

++x; pow& y); 
6: +tx; -ii-y; point(x. y); +tx; point(x. y); 

*xi ++y; p(wx. y); 
end (case) 

end (draw) 

begin 
dx=a2-al; dy=b2-bl; 
x = al; y= bl; 
xend=a2- 1; 
POWL y); 
incr2 = 4*dy - 2*dx; 
if incr2 <= 0 then begin 

c = 2*dy; 
(slope is <= l/2) 

incrl = 2*c; 
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incr3=incr2+c; 
D=incrl-dx; 
while x < xend do 

If D -c 0 then begin 
draw(l); D=D +incrl; end 

else If D >= c then begin 
draw& D=D +incR, end 

else begin 
draw(S); D = D + incr3: end, 

end 
else begin (slope is > l/2) 

c = 2*(dy - dx); 
incrl = 2*c; 
incr3=incr2+c; 
D=incrl+dx; 
while x c xend do 

If D >= 0 then begin . 
draw(4); D=D+incrl; end 

else if D c c then begin 
draw(2); D=D+incr% end 

else begin 
draw(6); D = D + incr3; end; 

end; {if) 
{plot endpoint if it is not set) 
If x c a2 then point(a2, b2); 

end (LINE) 

Figure 5. The double- and triple-step algorithm. 

Table 1. Run times (in us) of the double- and triple-step 
(DTS) and the double-step (DS) algorithms for limes 100 units 
in length. 

3.4. Complexity Analysis 

In this section, the double-step and the double- and 
triple-step algorithms are compared under best, average, and 
worst case conditions. The run-time performances of each 
algorithm are then given. 

Under best case conditions, it is apparent that the 
number of iterations is reduced by 33% by considering a 
line where 3dy = dx and dr is some large integer. Once 
raster&d by the double- and triple-step algorithm, this line 
will correspond to a sequence of pattern 5 settings, and 
three pixels are set each iteration. However, when 
raster&d by the double-step algorithm, only two pixels are 
set each iteration. Therefore, the ratio of the number of 

iterations performed by each algorithm equals z = 2/3. 

For an average case analysis, we will only consider lines 
such that 0 I dy/dx 5 l/2. The remaining cases are proven 
in a similar manner. We begin by noting that the relative 
speed of the double and triple-step algorithm is dependent 
on the value of dy. In other words, when dy equals zero, 
two steps are taken every iteration. When dy equals one, 
there can be at most one iteration where three steps are 
taken, and so on. Assuming that the number of steps of 
size three is dyf2 on average and the average value of dy is 
dx/4, the average number of iterations having steps of size 
three equals dx/8, and the average number of iterations is 
7dx/16. Since the double-step algorithm always iterates 
u!&? times, the number of iterations is reduced by 12.5% 
on average. It is obvious that there are no differences under 
worst case conditions. 

Table 2. Run tunes (ii us) of the double- and triple-step 
IDTS) and the double-sten CDS) alrroritluns for limes loo0 units 

Endpoint M’S DS % Reduction 
I f1fmn n\ AQ7 AR7 on I 

\‘““U, v, -rY, TV, V.” 

fQQQ A?\ A01 5n5 34 1 

--- 
--.- 

1 563 623 9.6 i 

87, 461) 618 630 1.9 I 
- .  .  

. I _  1 16.4 
L AR7 552 11.8 I --- --_- I ioi 524 3.8 1 

(766, 642) 487 497 2.0 
(737, 675) 463 465 0.4 
(707, 707) 434 434 0.0 

Comparisons were also made by implementing each 
algorithm using compiled C on a DECstation without 
graphics output. The lines which were tested form the 
spokes in the first octant of wheels having radii which are 
10. 100, and 1000 units in length, These wheels are 
centered at the origin so the lines can be specified by 
simply giving the endpoint. As one may suspect, there are 
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no noticable differences in the initialization costs. If 
anything, a case could be made that the initialization costs 
are reduced by an instruction or two. The differences are 
also negligible for lines which are 10 units in length since 
there are only a few instructions that can be eliminated. 
Therefore, these results are not given. However, as shown 
in Tables 1 and 2, the speed is reduced significantly for 
some of the longer lines. Again, it is acknowledged that 
these savings will not be realized in practice due to the 
more time-consuming pixel write operations. We also 
note that the time reductions should not approach the 
values by which the iterations are reduced since some work, 
such as the initialization costs and incrementing x and y. 
must always be performed. 

4. Final Remarks 

A method of increasing the speed of one of the fastest 
line drawing algorithms is presented and analyzed. Our 
investigation shows that the speed of the algorithm can be 
improved while keeping the code complexity and 
initialization costs the same. The speed of the resulting 
algorithm could be improved further by also exploiting the 
symmetry of lines as noted in [ll]. Under these 
conditions, either four or six pixels will be set each 
iteration of the loop. Perhaps similar results could be 
obtained by applying this method to various other line 
drawing algorithms that exist. 
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