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A major bottleneck in many graphics displays is the time required to scan-convert straight line 
segments. Most manufacturers use hardware based on Bresenham’s [5] line algorithm. In this paper 
an algorithm is developed based on the original Bresenham scan-conversion together with the 
symmetry first noted by Gardner [18] and a recent double-step technique [31]. This results in a 
speed-up of scan-conversion by a factor of approximately 4 as compared to the original Bresenham 
algorithm. Hardware implementations are simple and efficient since the property of using only shift 
and increment operations is preserved. 

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation-display 
algorithms 

General Terms: Algorithms 

Additional Key Words and Phrases: Computer graphics, incremental curve generation, line generators 

1. INTRODUCTION 

In computer graphics the majority of algorithms for drawing mathematical curves 
are of the incremental type [2,5,6, 11,14,22,23,26,28,29,31]. These algorithms 
generate discrete loci of curves in the raster plane by selecting one of two possible 
pixels once a one-step increment along a certain axis has been made. The choice 
between the two possible pixels is made by testing the sign of a discriminator. 
This discriminator obeys a simple recurrence formula which may be evaluated 
using only integer arithmetic and binary shift. The incremental algorithms are 
therefore computationally inexpensive, hence popular and widely used. The first 
such algorithm was due to Bresenham [5]. His algorithm was simple, robust, and 
efficient, as evidenced by its recent incorporation as the algorithm for scan- 
converting lines in the Texas Instruments 34010 graphics processor 
(see PI). 
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The generation of line segments (called lines in the sequel) is the basic graphics 
primitive. This is evidenced by the fact that graphics hardware tends to be 
benchmarked by the speed by which it can generate lines. A considerable interest 
has therefore been shown in attempting to improve the basic Bresenham algo- 
rithm [2, 6, 7, 11, 14, 20, 21, 29, 311. These studies aim at increasing the scan- 
conversion speed while maintaining the same choice of scan-converted pixels as 
generated by the original Bresenham algorithm. Properties of discrete line 
segments have also been investigated, in particular in the thesis by Dorst [12] 
and also by Brons [8]. 

In this paper an algorithm is developed that combines the symmetry principle 
noted by Gardner [18] with the double-step technique developed by Wu and 
Rokne [31]. This results in an algorithm that roughly gains a factor of 2 in scan- 
conversion speed from the symmetry and another factor of roughly 2 from the 
double-step technique, for an overall gain in speed of about 4 over the original 
Bresenham algorithm. In [18], the awkward case of the line crossing exactly 
midway between two adjacent integer coordinates caused a slight deviation from 
the original Bresenham pixel sequence. This was rectified in [4] at a cost of one 
extra test for each pixel, scan-converted in order to generate exactly reversible 
pixel sequences. The symmetric nature of the pixel sequences was not used to 
speed up the scan-conversion, however. Instead the testing for the awkward cases 
is incorporated into the double-step algorithm from [31] in such a manner that 
the testing only has to be performed very infrequently. 

Multiple pixel generation has also been discussed by Sproull [28]. In [28], 
selected pixels in the scan-conversion sequence, a fixed increment apart, are first 
computed. Then the in-between pixels are filled in. Although this has similarities 
with the double-step technique, it does not take advantage of the special prop- 
erties available when the step-size is exactly 2. 

Other approaches to speeding up scan-conversion include run-length algo- 
rithms (see [7, 261) and approaches based on Euclid’s algorithm (see [9, lo]). 

The paper is organized as follows. First, some properties of discrete loci of 
nonparametric curves f (x, y) = 0 in the raster plane are summarized from [31]. 
These properties make it possible to interpolate half of the pixels on the curve 
at low cost. This means that the speed of scan-conversion of curves may be 
roughly doubled. The application of the double-step idea to scan-conversion of 
lines was discussed in [31], and a summary is given here. The symmetry principle 
for lines having integer end coordinates first noted in [la] is then discussed. A 
combined algorithm is given that speeds up the scan-conversion of lines by a 
factor of approximately 4 over the original Bresenham implementation. This 
gain in speed is not realized in actual practice because of the inevitable pixel 
write operations. If they dominate, then the algorithm may not be viably imple- 
mented in current hardware. In future hardware the bottleneck may well be in 
the scan-conversion such that the proposed algorithm may be more appropriate. 

2. DOUBLE-STEP SCAN-CONVERSION OF LINES 

The discussions of the double-step principle and its application to the scan- 
conversion of lines given in [31] is now summarized. The basis for this discussion 
is the following property of curves on the raster plane. 
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Fi.g. 1. The four double-step patterns. 

Let f (x, y) = 0 be a two-dimensional curve having a continuous first derivative, 
and assume it is divided into segments that satisfy one of the following cases: 

a) 0 5 & 5 z 1 b) l<$m 

cl -a<*<-1 dx d) -1 5 5 0. 2 

The discussion is restricted to case a) since the other cases can be reduced to 
case a) by swapping x and y and/or changing incremental direction. Consider 
therefore a 2 X 2 mesh with starting point (x0, yo) at the lower left corner 
representing a portion of the discrete range space off (x, y) = 0. On this mesh 
the curve f (x, y) = 0 can only form the four patterns shown in Figure 1 (except 
for a very rare case of a right angle stair which cannot occur for lines; see also 
discussion in [33]). 

Starting from (x0, yO), the x coordinate is now incremented by two raster units. 
Then if the pixel at the right-lower (the right-upper) corner of the 2 X 2 mesh is 
selected, it is clear that pattern 1 (4) occurs. This means that in each case the 
middle pixel can be plotted with no extra work. If pattern 2 or 3 occurs 
(abbreviated pattern 2 (3) in the sequel), then some extra work has to be done in 
order to distinguish which of the two patterns have to be plotted. It was 
conjectured by Freeman [16, 171 and proven by Regiori [26] (see also [31, 321) 
that only two pattern types may occur simultaneously: either 1 and 2 (3) or 2 (3) 
and 4. From these results an effective double-step strategy was developed. This 
strategy is now summarized. 

Assume that the line is defined as y = (dy/dx)x, 0 I dy/dx I 1. If (dy/dx) I 
f, then the double-step algorithm is given by 

Algorithm 1. Let D1 = 4dy - dx, a1 = 4dy and a2 = 4dy - 2dx. For i = 1,2, . . . 

Di+, == 
-I 

Di + (~1 if Di < 0 (pattern 1) 
Di + (ys otherwise (pattern 2 (3)), 

and if (dy/dx) 2 $ then the algorithm is 

Algorithm 2. Let D, := 4dy - 3dx, PI = 4dy - 2dx and & = 4(dy - dx). For 
i=l,2 , . . . 

Di+l q = 

i 

Di + PI if D, < 0 (pattern 2 (3)) 
Di + pz otherwise (pattern 4). 
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To distinguish between patterns 2 and 3 requires the test 

Di< i$y - dx) 
if 0 I dy/dx < 1. 
if i 5 dy/dx I ; 

giving pattern 2 if the test is passed, pattern 3 if not. 

The above algorithm was implemented and Pascal code was given as Figure 3 
in [31]. It was shown to be almost twice as fast as Bresenham’s original algorithm 
if pixel I/O was ignored in both cases. 

3. SYMMETRY WITH DOUBLE-STEP 

We again consider line segments between (0,O) and (dx, dy) where dx and dy are 
integers. The line segment is therefore 

0 I x I dx. 

If the scan-conversion is started at (0, 0) then the sequence of coordinates (or 
set of pixels) is denoted by 

(x0, Yo), (Xl, Yl), - * *, t&l, Yn) (2) 

wherexi=i,i=O,l,..., n with (x0, y,,) = (0, 0) and (x,,, yn) = (dx, dy). From 
the properties of the scan-conversion in the Bresenham sense (see [31] ) it follows 
that 

I Yi - Y(G) I = $3 i = 0, 1, . . . , n. 

If the scan-conversion is started at (dx, dy) then similarly the sequence 

(4, Yh), (xi, Yl), * * *, (XA, Y3 (3) 

is generated where again XI = a’ - i, i = 0, 1, . . . , n with (x6, ~6) = (dx, dy) and 
(x;, y:) = (0, 0). This sequence satisfies 

lY&f - Y(d) I 5 $, i = 0, 1, . . . , n. 

It was noted in Gardner [18] that the scan-converted lines were symmetric 
around the midpoint of the line if slight deviations from the line scan-converted 
by Bresenham’s algorithm were accepted. These deviations occur when the line 
crosses the vertical lines going through the integer x coordinates exactly midway 
between two integer y values. It was furthermore noted in [9] that the lines were 
palindromic, i.e., symmetric, if dx and dy were relative prime. Here we formalize 
this symmetry principle. 

THEOREM 1. Let y = (dy/dx)x, 0 I x 5 dx define a line segment with integer 
endpoints (0, 0) and (dx, dy). Then the pixel sequences defined by (2) and (3) 
satisfy 

(Xi, .Yi) = (XA-i, YA-i), 

unless ( yi - y(xi) ) = f in which case 

(Xi, Yi - 1) = txrt-i, YL-i). 
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990. 
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PROOF. Since the x (3:‘) directions are incremented (decremented) one 
unit at a time it is clear that xi = XL, i = 0, 1, . . . , n. Assume first that 
lyi - y(Xi) 1 # f, i = 0, I, . . . , n. Then the closest integer point to y(Xi) is yi. 
Similarly yAm1, is the close,& point to y(xA-i). Since X, = x;-i it follows that yi = 
yh-i, i = 0, 1, . . . , n. 

If ) yi - y(xi) 1 = $ for some i, then, since the relation “closest point” is defined 
to be the 5 relation, it follows that if yi is closest to y(xi) in the positive y 
direction, then y;-i is closest in the negative y direction and y:-i - yi = 1. q 

Based on this theorem it is clear that only the first half of the line segment 
needs to be scan-converted. The second half may be copied as the first half is 
generated, but in reverse order except when the relation 1 yi - y(xi) I = i is true. 

The awkward case of 1 J/i - y(s) ) = i for some i, called a i crossing in the 
sequel, is now considered in detail. 

First of all we note t.bat if this case occurs, then dx is even. In fact if 
I yi - y(xi) I = f, then the original line segment from (0, 0) to (do, dy) passes 
through either (xi, yi + f) or (xi, yi - i) where Xi and yi are both integers. 
We only consider the first case where the intercept is (xi, yi + f) since the 
second case gives the ident.ical result. Clearly the triangles formed by the points 
(0, 0), (xi, yi + $) and by the points (0, 0), (dz, 0), (dx, dy) are congruent. It is 
immediately clear that (cJy/dz) = (yi + $)/Xi. From this it follows that 2(dy)xi - 
dx(2yi + l), which implies that dx must be even since dx, dy, xi, and yi must all 
be integers. 

The condition that dx is even is only necessary. A further sufficient (but not 
necessary) condition is that dy is odd, which can be verified by a simple calculation 
of y(dx/2). 

The decision procedure to be employed is therefore: 

(i) If dx is odd then scan-convert the line from (0, 0) to (dx, dy) using the 
double-step and symmetry ideas as discussed above, ignoring tests for $ 
crossings. 

(ii) If dx is even and dy i.s odd then scan-convert the line from (0,O) to (dx, dy) 
using the double-step technique and symmetry, while testing for f 
crossings. 

(iii) If both dx and dy are even then find largest common factor 2k, scan-convert 
the line-segment (0, 0) to (dx/2k, dy/2k) and repeat 2k times, thus reducing 
this case to one of the cases (i) or (ii) above. 

A technique similar to the above case (iii) was employed in [15] to develop a 
recursive scan-conversion algorithm. The algorithm was only valid for lines 
whose x extent was a power of 2. 

We now consider the e:ffect of f crossings. When a $ crossing has been found 
then this might imply a further symmetry of the line. Using the same arguments 
as in Theorem 1 it is easy to see that the initial scan-converted pixel pattern 
may be reversed and copied starting at the $ crossing. Although this may be used 
to speed up the algorithm further it is not used here. 

The checking for + crossings may be streamlined when the double-step algo- 
rithm is used in conjunction with the symmetry idea. Consider therefore Fig- 
ure 2 and assume 0 5 (dy/dx) 5 t (the other cases may be treated in a similar 
ACM Transactions on Graphics, Vd. !3, No. 4, October 1990. 
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xi x1+1 xi+2 xi xi+l xi+2 xi xitl xit2 

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3 

Fig. 2. Testing for $ crossings ( - , - no i crossing;-possible i crossing). 

dx even 
dy even 

dx even dx odd 
dy odd dy odd 

Fig. 3. Midpoint termination. 

dx odd 
dy even 

manner). In this figure the possible range of values of y(~i+~) is indicated under 
the various constraints and cases given a yi+7 (7 = 0, 1, 2). Each of the three 
possible patterns are now treated separately. 

Pattern 1. From the previous double-step it follows that 1 y(Xi) - yi 1 < f (if 
this were not true, then a i crossing would have been found and the symmetry 
pixels would have been plotted). In the current step, the decision procedure has 
already decided that y(ri+p) - yi+z < $. Hence also y(xi+l) - yi+l < $. Thus no 
additional test is necessary for Pattern 1 (see Figure 2a). 

Pattern 2. In Pattern 2, similarly, no test is needed at Xi. In deciding that this 
was Pattern 2 we have y(~i+~) - yi+l < $, hence a $ crossing cannot occur at ri+l. 
It is, however, necessary to test if y(xi+z) - yi+z = $ (see Figure 2b). If true, then 
the patterns are symmetric about xi+z. 

Pattern 3. Again no test is necessary at Xi* However, it is necessary to test if 
Y(%+l) - .Yi+l = f* If this is true, the already scan-converted line is symmetric 
about xi+l. Whether it is symmetric or not, it is clear that y (xi+p) - yi+z # $ since 
otherwise a Pattern 4 would occur, which cannot happen since y(xi) - yi < $ and 
y(xi+l) - yi+l > f. This means that no further tests are needed (see Figure 2~). 

The overhead for the half-way crossing test is therefore less than one test per 
double-step when the checking is necessary. 

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990. 



382 - J. G. Rokne et al. 

f I 
Xcurr := Xcurr I 2 ’ 
Ycurr := Ycurr I 2 
REPEAT := REPEAT + 1 

\, / 
A 

Plot line from 
to (Xcurr, Ycurr) 
while testing for 

t \ 
Plot line from (0,O) 
to (Xcurr, Ycurr) 
without testing for 

0 End 

Figure 4a 

Xcurr := 2 l Xcurr 
Ycurr := 2 l Ycurr 

The termination check occurs at the midpoint of the currently considered line 
segment. The situation here is shown in Figure 3. The four cases in Figure 3 
depend on the parity of dx and dy. 

4. ALGORITHM DESCRIPTION 

An algorithm incorporating d.ouble-step and symmetry ideas was developed. This 
algorithm is now described u,aing the flowcharts given in Figures 4(a) and 4(b). 

Figure 4a describes the parity checking on dx and dy discussed in the last 
section. This parity checking is performed in order to avoid some of the $ crossing 
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990. 
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xend :I (dx- 1) / 4; 
pixels leftover := (dx-1) mod 4: 

in&? :I 4 * dy - 2 ’ dx; 

[ plot (al, bl); plot (a2. b2); 1 

c := 2 * dy; 
incrl :- 2 * c; 

D := incrl - dx; 

Plot Line (al, bl) to (a2, b2) 
(0 <r slope <- l/2) 

This may be Qenedised to 
axis of ~reatesl movemenl 

Pixels plotted in groups of 4 
Plot last 1. 2 or 3 pixels separately 

Plot first and last pixels 

El 

These regions omitted if 
not testing for half crossings 

, J J 

Figure 4b 

tests. The flowchart includes the repeat loop for the case that both dx and dy 
have a common factor 2k for some k. 

If the cost of copying the pixels that are repeated in the patterns exceeds the 
cost of regenerating the pixel sequence, then the check for even dx and dy may 
be omitted, together with the pattern repetition part. This would result in a 
different flowchart, which is not shown here since it is easily constructed. 

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990. 
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The parity checking on d.x and dy may be omitted altogether for an easy 
implementation of the algorithm by always checking for * crossings in the 
flowchart in Figure 4b. 

Figure 4b contains a condensation of the algorithm to scan-convert lines 
without checking for f crossings (omitting boxes within the dashed lines) and 
with checking for f crossings (including boxes within dashed lines). 

In the first case the dashed boxes are omitted and the i crossings are not 
tested for. The flow of the algorithm is maintained by joining points a - a and 
b - b as marked on the flowchart and omitting the flowchart elements con- 
tained in the grey areas. The algorithm is essentially the algorithm described in 
Figure 3 of [31] with the addition of backward plotting patterns. The backward 
patterns are described via a coordinate system rotated 180” with respect to the 
original coordinate system in order to reverse plotting direction. Patterns in the 
original coordinate system are called forward patterns and in the rotated coordi- 
nate system backward patterns. If there are no f crossings, then the forward 
pattern sequence in the original coordinate system and the backward pattern 
sequence in the rotated coordinate system are the same as shown in Theorem 1. 

In the second case the i crossings are tested for by including all the items of 
the flowchart as given in Figure 4b. The added features incorporate the discussion 
of the i crossings with respect to the forward Patterns 1,2, and 3 in the previous 
section. 

Since forward Pattern 1 ca.nnot have any f crossings, it follows that the reverse 
pattern is always backward Pattern 1 and no checking is necessary. 

In forward Pattern 2, we bad to check to see if the last pixel of the pattern was 
a $ crossing. If this were the case, then the last pixel of the backward double- 
step would be set opposite to the expected pattern, that is, backward Pattern 1 
instead of backward Pattern 2. 

Similarly we have to check if the middle pixel is a f crossing in forward Pattern 
3. If so, then the middle pixel has to be set to the opposite pixel in the reverse 
pattern, thus generating backward Pattern 2 instead of backward Pattern 3. 

It is also possible to use the $ crossings as symmetry centers and simply repeat 
pixel sequences when they have been found. This has not been incorporated here. 

5. COMPLEXITY 

For the complexity discussion we assume that the algorithm has been imple- 
mented as in Figure 4a, without the repeating loop if dx and dy are both even. 
This means that in the average case the $ crossings only have to be checked for 
in 50 percent of the cases. It is furthermore assumed that the f crossings are 
checked and corrected for ex.actly as in Figure 4b. This means that the further 
possible symmetries around .!j crossings are not used. The pixel sequences after 

the basic symmetry. 
2 crossings are therefore recalculated, and no use is made of symmetry beyond 

The complexity is also measured with respect to lines between (0, 0) and 
integer endpoints (dx, dy). Furthermore, it is assumed that 0 I (dy/dx) 5 f since 
the results are the same for other slopes. 
ACM Transactions on Graphics, Vol. 9, No.. 4, October 1990. 
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The scan-conversion of the above line requires (dx) additions and 2(dx) tests 
using the original Bresenham algorithm. 

In [31] it was shown that scan-conversion using the double-step algorithm 
required L(&)/BJ additions and 5L(dx)/4J tests on the average. 

Except for the increment size and the equality tests in the dashed boxes of 
Figure 4b, the repetitive loop is exactly as the loop in [31]. This means that the 
symmetric double-step algorithm requires L(h)/41 additions and 5L(dx)/8J tests 
if no checking for f crossings is performed. When checking for i crossings is 
done, this requires on the average dx/4 * $ * f * $ = 0.02 * dx additional tests, a 
negligible extra cost. 

6. NUMERICAL RESULTS 

Bresenham’s algorithm, the double-step algorithm, and the symmetric double- 
step algorithm were implemented in C on the Apple Mac+ computer and some 
tests were run. The results given in Tables I, II, and III were obtained. The lines 
were drawn from the origin (0, 0), in each case to the coordinate of the endpoint 
as given in the first column of the tables. The lines form the first quadrant 
spokes of wheels centered at the origin having radii 10,100, and 1000 respectively. 
The overhead was measured for each algorithm by counting one for each control 
statement executed (1 for each if, 1 for each assignment, etc.). Where the 
algorithms did equivalent work, as in calling the set pixel subroutine, no overhead 
was recorded. The lines in Table I are 10 pixels long, 100 pixels long in Table II, 
and 1000 pixels long in Table III. For comparison purposes the ratio of counts 
between Bresenham and double-step and between Bresenham and symmetric 
double-step were also computed. 

It can be seen that for the longer lines the symmetrical double-step algorithm 
has between 3 and 3.9 times less overhead than Bresenham’s original algorithm 
depending on the line angle. The double-step has between 1.3 and 2 times less 
overhead as would be expected from the foregoing analysis. The overhead varies 
with both line angle and line length. Indeed, short lines produce noticeably less 
speed-up than long lines, as would be expected. 

It is acknowledged by the authors that in practice, in a hardware line-drawing 
algorithm, the bottleneck is currently in the time taken to set a given pixel, and 
hence the reduction in overhead may not produce as significant a reduction in 
the total time required to raster a given line. 

In Tables I, II, and III the following abbreviations are used: 

Bres Bresenham’s algorithm 
Doub Double-Step 
Symm Symmetrical Double-Step 

In the previous section our analysis for the additions and tests showed that 
the Bresenham algorithm would cost roughly 3.0dx, the Double-Step 0.875dx, 
and the Symmetrical Double-Step 0.875. This results in theoretical ratios of 

Bres/Doub 1.71 
Bres/Symm 3.43 
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Table I. 10 Pixel Lines 

Endpoint Bres 

(10, 0) 31 
640) 29 
e-4 1) 29 
(%a 29 
a31 29 
(%4) 29 
(8,4) 27 
655) 27 
(7,6) 25 
(797) 25 
(6,7) 29 
(598) 31 
(4,9) 33 
(39% 33 
c&9) 33 
(1,9) 33 
(0,9) 33 

Times 
- 

Doub 

- 29 
27 
28 
29 
30 
31 
31 
30 
26 
25 
29 
33 
34 
33 
32 
31 
30 

Symm 

24 
21 
21 
23 
23 
23 
26 
26 
23 
23 
26 
29 
26 
26 
26 
24 
24 

Rel. Times 

Bres/Doub Bres/Symm 

1.1 1.3 
1.1 1.4 
1.0 1.4 
1.0 1.3 
1.0 1.3 
0.9 1.3 
0.9 1.0 
0.9 1.0 
1.0 1.1 
1.9 1.1 
1.0 1.1 
0.9 1.1 
1.0 1.3 
1.0 1.3 
1.0 1.3 
1.1 1.4 
1.1 1.4 

Table II. 100 Pixel Lines 

Endpoint Bres 

Times 
- 

Doub Symm 

Rel. Times 

Bres/Doub Bres/Symm 

(100, 0) 211 119 68 1.8 3.1 
(9% 8) 209 125 7 1.7 2.8 
(98, 17) 207 134 84 1.5 2.5 
(96, 25) 203 140 90 1.5 2.3 
(W34) 197 145 93 1.4 2.1 
(9% 42) 191 151 94 1.3 2.0 
(86,‘w 183 142 90 1.3 2.0 
(81957) 173 130 76 1.4 2.3 
(7% 64) 163 107 67 1.5 2.4 
(70,70) 151 89 54 1.7 2.8 
(‘X-3 167 110 70 1.5 2.4 
(57,81) 177 126 79 1.4 2.2 
(50,86) 187 144 95 1.3 2.0 
(4% 90) 195 154 97 1.3 2.0 
(34,931 201 148 96 1.4 2.1 
(2% 96) 207 143 93 1.4 2.2 
(17,98) 211 137 87 1.5 2.4 

03, 99) 213 128 79 1.7 2.7 
(0, 99) 213 120 71 1.8 3.0 

These ratios are not achieved for short lines. However, they are approximated 
reasonably well in Table III. The reason for this is that both the Double-Step 
and the Symmetrical Double-Step algorithms incur overhead over and above that 
of the Bresenham algorithm. Hence the theoretical speed-up is only attained 
when this overhead is amortized over longer lines. 
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990. 
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Endpoint Bres 

(1000,0) 2011 
(996,87) 2003 
(984,173) 1979 
(965, 258) 1941 
(939, 342) 1889 
(906,422) 1823 
(866,499) 1743 
(819,573) 1649 
(766,642) 1543 
(707,707) 1425 
(642,766) 1547 
(573,819) 1653 
(500,866) 1747 
(422, 906) 1827 
(342,939) 1893 
(258,965) 1945 
(173,984) 1983 

(87, 996) 2007 
(0, 99% 2013 

Table III. 1000 Pixel Lines 

Times Rel. Times 

Doub Symm Bres/Doub Bres/Symm 

1019 518 2.0 3.9 
1102 599 1.8 3.3 
1176 674 1.7 2.9 
1241 741 1.6 2.6 
1299 801 1.5 2.4 
1347 774 1.4 2.4 
1252 728 1.4 2.4 
1083 607 1.5 2.7 
909 498 1.7 3.1 
725 373 2.0 3.8 
912 501 1.7 3.1 

1086 610 1.5 2.7 
1254 734 1.4 2.4 
1350 777 1.4 2.4 
1302 804 1.5 2.4 
1244 744 1.6 2.6 
1179 677 1.7 2.9 
1105 602 1.8 3.3 
1020 521 2.0 3.9 

7. CONCLUSION 

Three improvements to the scan-conversion of lines have been discussed. These 
are the double-step technique previously reported in [31], the use of line symmetry 
of lines with respect to scan-conversion direction first discussed by [18] and the 
combination of the above two techniques into a new efficient algorithm. The 
latter algorithm speeds up the scan-conversion (in the sense of the computational 
effort) of a line by a factor of roughly three over the original Bresenham version 
when the lines are sufficiently long. 
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