
Double- and Triple-Step Incremental Generation of Lines

Phil Graham and S. Sitharama Iyengar

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803

Abstract: A method of increasing the efficiency of line
drawing algorithms by setting additional pixels during loop
iterations is presented in this paper. This method adds no
additional costs to the loop. It is applied here to the double-
step algorithm presented in [15] and later used in [141,
resulting in up to a thirty-three percent reduction in the
number of iterations and a sixteen percent increase in speed.
In addition, the code complexity and initialization costs of the
resulting algorithm remain the same.

Keywords and Phrases: pixel, line drawing algorithms,
integer logic, rasterization.

1. Introduction

Line drawing algorithms are effectively used to
determine the points which lie closest to a line segment
along its major axis, given the segment’s starting and
ending points. As one may suspect, much attention has
been devoted to developing efficient line drawing
algorithms in computer graphics over the years. In
addition to drawing lines and modeling geometric shapes,
such as squares, line drawing algorithms are used to
approximate other shapes such as circles. They are also
used in ray tracing [lo] and polygon-filling algorithms, as
well as other applications involving lines. Truly, line
drawing algorithms are a fundamental topic in the area of
computer graphics.

Various algorithms have been presented which
eliminate or greatly reduce the need to perform
multiplications and divisions. For instance, the traditional
Bresenham algorithm [2] performs integer logic on the
error term with respect to one coordinate as values of the
other coordinate are incremented. The algorithm in [15]
performs integer logic to generate line points by instead
taking a double step increment with respect to one of the
coordinate axes. Bresenham’s run length slice algorithm

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

01993 ACM O-89791-558-5/93/0200/0384 $1.50

[3,4] calculates a slice of movements with respect to a
particular coordinate axis in each iteration of a loop. Other
approaches to speeding up the scan-conversion process are
based on Euclid’s algorithm [6, 71. In addition, the
properties of discrete line segments have been studied and
incorporated into algorithms, thereby making them more
efficient. There are also line drawing algorithms which are
derivations or variations of these algorithms [S].

In this paper, we introduce a method of increasing the
speed of line drawing algorithms by setting additional
pixels in the loop iterations. This method is applied to the
double-step algorithm proposed in [15] and later used in
[14]. While the double-step algorithm always sets two
pixels per loop iteration, our algorithm sets either two or
three pixels per loop iteration. Also, no additional logic is
needed in the loop, and the amount of the remaining logic
can be considered the same as that for the double-step
algorithm. Previous attempts to increase the step sizes
offered no clear advantages due to the large increases in the
complexity of the algorithm [l]. It should be noted that
while this method can result in rather substantial increases
in speed of the scan-conversion process, the improvement
is not realized in practice due to the inevitable pixel write
operations which dominate timewise. Nevertheless, the
speed of the entire process can be improved somewhat by
making each stage as fast as possib.@ Furthermore, as
noted in [14], the bottleneck may well be in scan-
conversion in future hardware. Before presenting our
modified algorithm, however, we will first discuss the
double-step line algorithm in greater detail.

2. The Double-Step Algorithm

The double-step algorithm for drawing curves on the
raster plane is summarized as follows. Letf(x,y) = 0 be a
two-dimensional curve having a continuous first derivative.
Assume it is divided into segments which satisfy one of
the following cases:

(4 o&,1 (b) I<%<-

(c) % -m<-<-1
dx

(d) -l,$O

384

As in [14] and [15], the discussions in this paper are
restricted to case (a) since the other cases can be reduced to
case (a) by swapping x and y and/or changing the
incremental direction. In addition, only lines having
integer coordinate values for their starting and ending
points are considered. These points are denoted as (x0, yo)
and (xn, y), respectively. The pixels set at the remaining
grid locations are denoted as (xi, yi), 0 < i c n. When
setting the pixels of a line on a raster grid (which will have
starting point (x0, yo) at the lower left comer) where the
step size in the x direction is two, only four patterns are
possibb (Figure 1). It was conjectured by Freeman [8,9]
and proven by Regiori [13] that only two pattern types
may occur simultaneously: either patterns 1 and 2 (3) or
patterns 2 (3) and 4 (where 2 (3) is an abbreviation for
pattern 2 or pattern 3). The possibility of the occurrence of
a set of patterns depends on whether 0 I dy/dx c l/2 or l/2
cdy/dx< 1.

Pattem 1 Pattern 2

#e #+
Pattern 3 Pattern 4

Figure 1. The four types of double-step patterns.

In the double-step algorithm, lines are classified
according to their slopes, as just described. A
discriminator, Di, is then updated each iteration of a loop
in which double step sizes in the x direction are taken.
This discriminator determines that the patterns which
should be set are as shown below:

If dyldr < 112 then the algorithm is given by

Algorithm 1. Let Dl= 4dy - &, al = 4dy, and
a2 = 4dy - 2dx. For i = 1.2. . . .

Di+l =
1

D;+ al if Di c 0 (pattern 1)
Di + a2 otherwise (pattern 2 (3))

and if dyldx 2 It2 then the algorithm is

Algorithm 2. Let Dl= 4dy - 3dx, p1 = 4dy -
2&, and h = 4(dy - dx). For i = 1.2, . . .

Di+l = Di+Pl if Di < 0 (pattern 2 (3))
Di+h otherwise (pattern 4)

Since the middle pixels which should be set when pattern 1
(4) occurs is known, the only work that remains is to
distinguish between patterns 2 and 3. This is performed by
the following test which results in the pixel corresponding
to pattern 2 being set if the test is passed and pattern 3 if it
is not passed:

if 0 5 dyidx < 112
if l/2 I dyfak I 1

The detailed double-step line algorithm is given in Figure
2. It is shown that the stopping conditions are determined
by decrementing the x coordinate value of the endpoint if
dx is odd. Otherwise, an additional pixel would be set
because two pixels are set in each iteration of the while
loops. In [14], it is stated that the Pascal implementation
is approximately twice as fast as Bresenham’s original
algorithm if pixel I/O is ignored.

procedure LINE(a1, bl, a2. b2: integer);
var dx, dy, incrl, incr2, D, x, y, xend, c: integer;

procedure draw(pattem: integer);
begin

case pattern of
1: +tX; point(x. y); +tx; point(x. y);
2: +tx; point(x, y); i-l-x; +ty; point(x, y);
3: +tx; +t-y; poillt(x, y); ++x; point(x, y);
4: ++x; ++y; point(x, y); +tx; +ky; point(x. y);
end (case)

end (draw)

begin
dx=a2-al; dy=b2-bl;
x=al; y=bl;
if dx is even then begin parity = 0;: xend = a2; end
else begin parity = 1; xend = a2 - 1; end;
pint(x. y);
incr2 = 4*dy - 2*dx;
if incr2 < 0 then begin

c = 2*dy;
(slope is less than l/2)

incrl = 2*c;
D=incrl -dx;
while x o xend do

if D c 0 then begin
draw(l); D = D + incrl; end

else begin
if D < c then draw(2) else draw(3);
D=D+incr2;
end:

end
else begin (slope is 2 l/2)

c = 2*(dy - dx);
incrl = 2*c;
D=incrl+dx;
while x c> xend do

385

If D % 0 then begin
draw(4); D =D+incrl; end

else begin
if D < c then draw(2) else draw(f);
D=D+incR;
end;

end; (if)
(plot the endpoint if dx is odd)
if parity = 1 then point(& b2);

end (LINE}

Figure 2. The double-step lie algorithm.

3. The Double- and Triple-Step
Algorithm

It is noted in [15] that when patterns 2 and 3 are not
distinguished from each other, the repetitive loop in the
double-step algorithm is the same as that in Bresenham’s
algorithm, with the exception that two pixels are set per
iteration. As a result, the double-step algorithm loops
only LMJ times whereas the Bresenham algorithm loops
dx times, and it can be roughly twice as fast. Therefore,
the additions, tests, and jumps in the loop that are saved by
performing fewer iterations can greatly offset the few
additional initializing operations. Although the double-
step algorithm is still faster, some of these benefits are
reduced when patterns 2 and 3 are distinguished from each
other as a result of the additional comparison(s) and
jump(s) (see the “if D < c then . ..” portions of the code in
Figure 2). In this section, we present a double- and triple-
step algorithm which remedies the problem of the
additional computations associated with distinguishing
patterns 2 and 3 by setting an additional pixel under the
worst case conditions. Setting the additional pixel does not
add any logic to the loop, and the remaining logic is the
same as that for the double-step algorithm.

Pattern 5 Pattern 6

Figure 3. The two additional pixel patterns of the
double- and triple-step algorithm.

3.1. Double and Triple Steps

We begin our discussion of the double- and triple-step
algorithm by describing the relationship of pixels at xi and
Xi+l- If the pixels set at Xi and Xi+1 have the same y
coordinate value, then a sideways movement occurs from
Xi. If the pixels set at Xi and Xi+1 do not have the same y

coordinate value, then a diagonal movement occurs from
xi. We now make several observations concerning lines
below (Once again, only lines where 0 I dy/dx 2 1 are
considered. However, additional observations for the
remaining lines in the 2-D plane can easily be made):

Observation 1. If 0 s dyldx c l/2. then it is not
possible to make two successive diagonal movements.

Observation 2. If l/2 c dyldx g 1. then it is not
possible to make two successive sideways movements.

These observations are easily proven by considering the
slope of any line in question and are omitted for brevity.
Previously. the middle pixels in patterns 1 and 4 could be
determined without any additional computation once the y
coordinate value of the pixel set at xi+2 was determined.
From Observation 1. it follows that the pixel at Xi+3 can
also be determined without any additional computation
when dy/& c l/2 and pattern 2 occurs. In addition, from
Observation 2, it follows that the pixel at xi+3 can be
determined without any additional computation when l/2 c
dy/dx 2 1 and pattern 3 occurs. Each of these pixel
patterns will be called patterns 5 and 6, respectively (Figure
3). Since a third pixel can be set without any additional
computation in certain circumstances, the double- and
triple-step algorithm will set three pixels whenever
possible and will set two pixels in the remaining cases.

3.2. Updating the Discriminator

In the double-step algorithm, the two sets of pixel
patterns possible of occurring together are patterns 1 and 2
(3) as well as patterns 2 (3) and 4. Since the same
movements are made in patterns 2 and 3 (although in
different order), the discriminators for each pattern are
treated the same. However, in the double- and triple-step
algorithm, the sets of patterns possible of occurring
together are patterns 1 and 5 (3) as well as patterns 2 (6)
and 4. Because the movements associated with patterns 5
and 3 (as well as 2 and 6) are different, it must now be
determined how to update the discriminator when pattern 5
(or 6) occur.

Earlier, it was shown that the discriminator can be
defined with respect to steps of size two. As noted in [2],
the discriminator can also be defined with respect to steps
of size one:

D;+I =
D; + 2dy if 0; C 0 (yi = yi-1)
D; + 2(dy - dx) otherwise (yi = yi-1 + I)

It turns out that the discriminator for the double-step
algorithm is defined and updated in a manner very similar
to that for the discriminator above. Therefore, letting
Di = Dl, the new value of the discriminator in the double-
and triple-step algorithm is defined as:

386

DLl = 0; + (4dy - 2dx) + 2dy

when pattern 5 occurs. When pattern 6 occurs, the new
value of the discriminator is defined as:

or+1 =D;+(4dyG!dx)+2(dy-dx).

Of court. the discriminator values are updated as before
when patterns 1, 2, 3, and 4 occur. Therefore, the steps
taken by the double- and triple-step algorithm are
summarized as follows:

If 0 I dyldx I l/2 then the algorithm is given by

Algorithm 3. Let Di = 4dy - a?, al = 4dy, a2 =
4dy-2d&anda=2dy. Fori=l,2 ,...

{

0; + a1 if Di < 0 (pattern 1)
DLI = D;+az+as ifO5D~<a3(pattem5)

Dj’+a2 if a3 5 D j’ (pattern 3)

and if 1 I2 < dyldx I I then the algorithm is

Algorithm 4. Let Di’ = 4dy - 3dx, j31 = 4dy -
2&, p2 = 4(dy - dx), and & = 2(dy - dx). For i = 1,
2) . . .

D;+I =
Dj’+j31 ifDj’<& (pattem2)
Di+j31+/33 iffi3<Dl<O(pattem6)
D;+j32 if 0 I 0: (pattern 4)

3.3. Termination

Since either two or three pixels will be set in each
iteration of a loop, the stopping conditions of the loops
must be determined in a different manner from the double-
step algorithm. In this section, the termination conditions
of the double- and triple-step algorithm for the case where
dy/dx c l/2 will be discussed first. Then the cases where
dy/dx is greater than l/2 and dy/dx equals l/2 will be
considered.

G-2 xn ha-2 +a

(9 (ii)

Figure 4. Cases where additional pixels are set by
the double- and triple-step algorithm.

When dyldr < 112, the termination conditions are easily
determined by constructing a loop which stops iterating
once the pixel at Xn,1 is set. It is followed by an if clause
which sets the pixel corresponding to the endpoint
(provided it has not already been set) since the loop either
sets the correct number of pixels or all the pixels except
the endpoint. The fact that the loop sets the pixels
described above is proven by considering all possible cases.
For instance, if the first pixel to be set in the current
iteration of the loop is at location Xn-1, then the correct
number of pixels will be set when pattern l(3) occurs. On
the other hand, if pattern 5 occurs, an “extra” pixel will be
set (Figure 4 (i)). However, pattern 5 cannot occur in such
a situation; since the slope is less than l/2. a sideways
movement must always be made from x,-l. In the
remaining cases, either the correct number of pixels are set,
or more iterations must be performed.

When l/2 < dyldx 1. 1, a loop and an if clause are
constructed as before. Once again, it is proven that no
“extra” pixels are set by considering the different cases
which are possible. For instance, if the first pixel to be set
in the current iteration is at location xn-1. the correct
number of pixels will be set when pattern 4 (2) occurs. On
the other hand, if pattern 6 occurs, an “extra” pixel will be
set (Figure 4 (ii)). However, pattern 6 cannot occur in
such a situation: since the slope is greater than l/2, a
diagonal movement must always be made from location
X,-l. The remaining cases are proven using similar
arguments. Lastly, lines having a slope equal to l/2 are
now handled by Algorithm 3 since an additional pixel may
be set when Algorithm 4 processes these lines. The
calculations performed when determining the termination
conditions as well as the rest of the steps of the double- and
triple-step algorithm are shown in detail in Figure 5.

procedure LJNE(a1. bl. a2. b2: integer);
var dx. dy. incrl. incr2. incr3. D. x. y. xend. c: integer;

procedure draw(pattem: integer);
begin

case pattern of
1: +tx; point(x, y); +tx; point(x, y);
2: +tx; point(x, y); ++x; tty; point(x, y);
3: +tx; ++y; point(x, y); +I-x; point(x, y);
4: ++x; ++y; point(x. y); +tx; *y; point(x, y);
5: *x; point(x, y); ++x; ++y; point(x. y);

++x; pow& y);
6: +tx; -ii-y; point(x. y); +tx; point(x. y);

*xi ++y; p(wx. y);
end (case)

end (draw)

begin
dx=a2-al; dy=b2-bl;
x = al; y= bl;
xend=a2- 1;
POWL y);
incr2 = 4*dy - 2*dx;
if incr2 <= 0 then begin

c = 2*dy;
(slope is <= l/2)

incrl = 2*c;

387

incr3=incr2+c;
D=incrl-dx;
while x < xend do

If D -c 0 then begin
draw(l); D=D +incrl; end

else If D >= c then begin
draw& D=D +incR, end

else begin
draw(S); D = D + incr3: end,

end
else begin (slope is > l/2)

c = 2*(dy - dx);
incrl = 2*c;
incr3=incr2+c;
D=incrl+dx;
while x c xend do

If D >= 0 then begin .
draw(4); D=D+incrl; end

else if D c c then begin
draw(2); D=D+incr% end

else begin
draw(6); D = D + incr3; end;

end; {if)
{plot endpoint if it is not set)
If x c a2 then point(a2, b2);

end (LINE)

Figure 5. The double- and triple-step algorithm.

Table 1. Run times (in us) of the double- and triple-step
(DTS) and the double-step (DS) algorithms for limes 100 units
in length.

3.4. Complexity Analysis

In this section, the double-step and the double- and
triple-step algorithms are compared under best, average, and
worst case conditions. The run-time performances of each
algorithm are then given.

Under best case conditions, it is apparent that the
number of iterations is reduced by 33% by considering a
line where 3dy = dx and dr is some large integer. Once
raster&d by the double- and triple-step algorithm, this line
will correspond to a sequence of pattern 5 settings, and
three pixels are set each iteration. However, when
raster&d by the double-step algorithm, only two pixels are
set each iteration. Therefore, the ratio of the number of

iterations performed by each algorithm equals z = 2/3.

For an average case analysis, we will only consider lines
such that 0 I dy/dx 5 l/2. The remaining cases are proven
in a similar manner. We begin by noting that the relative
speed of the double and triple-step algorithm is dependent
on the value of dy. In other words, when dy equals zero,
two steps are taken every iteration. When dy equals one,
there can be at most one iteration where three steps are
taken, and so on. Assuming that the number of steps of
size three is dyf2 on average and the average value of dy is
dx/4, the average number of iterations having steps of size
three equals dx/8, and the average number of iterations is
7dx/16. Since the double-step algorithm always iterates
u!&? times, the number of iterations is reduced by 12.5%
on average. It is obvious that there are no differences under
worst case conditions.

Table 2. Run tunes (ii us) of the double- and triple-step
IDTS) and the double-sten CDS) alrroritluns for limes loo0 units

Endpoint M’S DS % Reduction
I f1fmn n\ AQ7 AR7 on I

\‘““U, v, -rY, TV, V.”

fQQQ A?\ A01 5n5 34 1

--.-

1 563 623 9.6 i

87, 461) 618 630 1.9 I
- . .

. I _ 1 16.4
L AR7 552 11.8 I --- --_- I ioi 524 3.8 1

(766, 642) 487 497 2.0
(737, 675) 463 465 0.4
(707, 707) 434 434 0.0

Comparisons were also made by implementing each
algorithm using compiled C on a DECstation without
graphics output. The lines which were tested form the
spokes in the first octant of wheels having radii which are
10. 100, and 1000 units in length, These wheels are
centered at the origin so the lines can be specified by
simply giving the endpoint. As one may suspect, there are

388

no noticable differences in the initialization costs. If
anything, a case could be made that the initialization costs
are reduced by an instruction or two. The differences are
also negligible for lines which are 10 units in length since
there are only a few instructions that can be eliminated.
Therefore, these results are not given. However, as shown
in Tables 1 and 2, the speed is reduced significantly for
some of the longer lines. Again, it is acknowledged that
these savings will not be realized in practice due to the
more time-consuming pixel write operations. We also
note that the time reductions should not approach the
values by which the iterations are reduced since some work,
such as the initialization costs and incrementing x and y.
must always be performed.

4. Final Remarks

A method of increasing the speed of one of the fastest
line drawing algorithms is presented and analyzed. Our
investigation shows that the speed of the algorithm can be
improved while keeping the code complexity and
initialization costs the same. The speed of the resulting
algorithm could be improved further by also exploiting the
symmetry of lines as noted in [ll]. Under these
conditions, either four or six pixels will be set each
iteration of the loop. Perhaps similar results could be
obtained by applying this method to various other line
drawing algorithms that exist.

5. References

[l] P. Bao and J. Rokne. Quadruple-step line generation.
Computers & Graphics 13(4), 461469 (1989).

[2] J.E. Bresenham. Algorithm for computer control of a
digital plotter, IBM Systems Journal 4(l), 25-30 (1965).

[3] J.E. Bresenharn. Incremental line compaction,
Computer Journal 25(1). 116 120 (1982).

[4] J.E. Bresenham. Run length slice algorithm for
incremental lines, in Fundamental Algorithms for
Computer Graphics (R.A. Earnshaw, Ed.), NATO ASI
Series, Springer-Verlag: New York, 59-104 (1985).

[5] G. Casciola. Basic concepts to accelerate line
algorithms, Computers & Graphics 12(3/4), 489-502
(1988).

171 C.M.A. Castle and M.L.V. Pitteway. An efficient
structural technique for encoding ‘best-fit’ straight lines,
Computer Journal 30(2). 168-175 (1987).

[S] H. Freeman. Boundary encoding and processing, in
Picture Processing and Psychopictorics (B.S. Lipkin and
A. Rosenfeld, Eds.). Academic Press: New York, 241266
(1970).

[9] H. Freeman, On the encoding of arbitrary geometric
configurations, IRE Trans. EC-102,260-268 (1961).

[lo] A. Fujimoto. T. Tanaka. and K. Iwata. ARTS:
Accelerated Ray-Tracing System, IEEE CG&A 6(4), 16-26
(1986).

[l l] P.L. Gardner. Modifications of Bresenham’s
algorithm for displays, IBM Tech. Disclosure Bull. Z&5),
1595-1596 (1975).

[12] M.L.V. Pitteway and A.J.R. Green. Bresenham’s
algorithm with run line coding shortcut, Computer
Journal 25(l). I147115 (1982).

[13] G.B. Regiori. Digital computer transformations for
irregular line drawings, Tech. Rep. 403-22, Department of
Electrical Engineering and Computer Science. New York
Univ., April 1972.

[14] J.G. Rokne, B. Wyvill, and X. Wu. Fast line scan-
conversion, ACM Transactions on Graphics 9(4), 376-388
(1990).

[15] X. Wu and J.G. Rokne. Double-step incremental
generation of lines and circles, Computer Vision, Graphics,
andImage Processing 37(3). 331-344 (1987).

[6] C.M.A. Castle and M.L.V. Pitteway. An application
of Euclid’s algorithm to drawing straight lines, in
Fundamental Algorithms for Computer Graphics (R.A.
Earnshaw, Ed.), NATO AS1 Series, Springer Verlag: New
York, 135-139 (1985).

389

