
Fast Line Scan-Conversion

J. G. ROKNE, BRIAN WYVILL
University of Calgary
and
XIAOLIN WU
University of Western Ontario

A major bottleneck in many graphics displays is the time required to scan-convert straight line
segments. Most manufacturers use hardware based on Bresenham’s [5] line algorithm. In this paper
an algorithm is developed based on the original Bresenham scan-conversion together with the
symmetry first noted by Gardner [18] and a recent double-step technique [31]. This results in a
speed-up of scan-conversion by a factor of approximately 4 as compared to the original Bresenham
algorithm. Hardware implementations are simple and efficient since the property of using only shift
and increment operations is preserved.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation-display
algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Computer graphics, incremental curve generation, line generators

1. INTRODUCTION

In computer graphics the majority of algorithms for drawing mathematical curves
are of the incremental type [2,5,6, 11,14,22,23,26,28,29,31]. These algorithms
generate discrete loci of curves in the raster plane by selecting one of two possible
pixels once a one-step increment along a certain axis has been made. The choice
between the two possible pixels is made by testing the sign of a discriminator.
This discriminator obeys a simple recurrence formula which may be evaluated
using only integer arithmetic and binary shift. The incremental algorithms are
therefore computationally inexpensive, hence popular and widely used. The first
such algorithm was due to Bresenham [5]. His algorithm was simple, robust, and
efficient, as evidenced by its recent incorporation as the algorithm for scan-
converting lines in the Texas Instruments 34010 graphics processor
(see PI).

-
This work was supported by grants from the Natural Science and Engineering Research Council of
Canada.
Permission to copy without fee a.11 or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0730-0301/90/1000-0376 $01.50

ACM Transactions on Graphics, Vol 9, No. 4, October 1990, Pages 376-388

Fast Line Scan-Conversion 377

The generation of line segments (called lines in the sequel) is the basic graphics
primitive. This is evidenced by the fact that graphics hardware tends to be
benchmarked by the speed by which it can generate lines. A considerable interest
has therefore been shown in attempting to improve the basic Bresenham algo-
rithm [2, 6, 7, 11, 14, 20, 21, 29, 311. These studies aim at increasing the scan-
conversion speed while maintaining the same choice of scan-converted pixels as
generated by the original Bresenham algorithm. Properties of discrete line
segments have also been investigated, in particular in the thesis by Dorst [12]
and also by Brons [8].

In this paper an algorithm is developed that combines the symmetry principle
noted by Gardner [18] with the double-step technique developed by Wu and
Rokne [31]. This results in an algorithm that roughly gains a factor of 2 in scan-
conversion speed from the symmetry and another factor of roughly 2 from the
double-step technique, for an overall gain in speed of about 4 over the original
Bresenham algorithm. In [18], the awkward case of the line crossing exactly
midway between two adjacent integer coordinates caused a slight deviation from
the original Bresenham pixel sequence. This was rectified in [4] at a cost of one
extra test for each pixel, scan-converted in order to generate exactly reversible
pixel sequences. The symmetric nature of the pixel sequences was not used to
speed up the scan-conversion, however. Instead the testing for the awkward cases
is incorporated into the double-step algorithm from [31] in such a manner that
the testing only has to be performed very infrequently.

Multiple pixel generation has also been discussed by Sproull [28]. In [28],
selected pixels in the scan-conversion sequence, a fixed increment apart, are first
computed. Then the in-between pixels are filled in. Although this has similarities
with the double-step technique, it does not take advantage of the special prop-
erties available when the step-size is exactly 2.

Other approaches to speeding up scan-conversion include run-length algo-
rithms (see [7, 261) and approaches based on Euclid’s algorithm (see [9, lo]).

The paper is organized as follows. First, some properties of discrete loci of
nonparametric curves f (x, y) = 0 in the raster plane are summarized from [31].
These properties make it possible to interpolate half of the pixels on the curve
at low cost. This means that the speed of scan-conversion of curves may be
roughly doubled. The application of the double-step idea to scan-conversion of
lines was discussed in [31], and a summary is given here. The symmetry principle
for lines having integer end coordinates first noted in [la] is then discussed. A
combined algorithm is given that speeds up the scan-conversion of lines by a
factor of approximately 4 over the original Bresenham implementation. This
gain in speed is not realized in actual practice because of the inevitable pixel
write operations. If they dominate, then the algorithm may not be viably imple-
mented in current hardware. In future hardware the bottleneck may well be in
the scan-conversion such that the proposed algorithm may be more appropriate.

2. DOUBLE-STEP SCAN-CONVERSION OF LINES

The discussions of the double-step principle and its application to the scan-
conversion of lines given in [31] is now summarized. The basis for this discussion
is the following property of curves on the raster plane.

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

378 l J. G. Rokne et al.

Fi.g. 1. The four double-step patterns.

Let f (x, y) = 0 be a two-dimensional curve having a continuous first derivative,
and assume it is divided into segments that satisfy one of the following cases:

a) 0 5 & 5 z 1 b) l<$m

cl -a<*<-1 dx d) -1 5 5 0. 2

The discussion is restricted to case a) since the other cases can be reduced to
case a) by swapping x and y and/or changing incremental direction. Consider
therefore a 2 X 2 mesh with starting point (x0, yo) at the lower left corner
representing a portion of the discrete range space off (x, y) = 0. On this mesh
the curve f (x, y) = 0 can only form the four patterns shown in Figure 1 (except
for a very rare case of a right angle stair which cannot occur for lines; see also
discussion in [33]).

Starting from (x0, yO), the x coordinate is now incremented by two raster units.
Then if the pixel at the right-lower (the right-upper) corner of the 2 X 2 mesh is
selected, it is clear that pattern 1 (4) occurs. This means that in each case the
middle pixel can be plotted with no extra work. If pattern 2 or 3 occurs
(abbreviated pattern 2 (3) in the sequel), then some extra work has to be done in
order to distinguish which of the two patterns have to be plotted. It was
conjectured by Freeman [16, 171 and proven by Regiori [26] (see also [31, 321)
that only two pattern types may occur simultaneously: either 1 and 2 (3) or 2 (3)
and 4. From these results an effective double-step strategy was developed. This
strategy is now summarized.

Assume that the line is defined as y = (dy/dx)x, 0 I dy/dx I 1. If (dy/dx) I
f, then the double-step algorithm is given by

Algorithm 1. Let D1 = 4dy - dx, a1 = 4dy and a2 = 4dy - 2dx. For i = 1,2, . . .

Di+, ==
-I

Di + (~1 if Di < 0 (pattern 1)
Di + (ys otherwise (pattern 2 (3)),

and if (dy/dx) 2 $ then the algorithm is

Algorithm 2. Let D, := 4dy - 3dx, PI = 4dy - 2dx and & = 4(dy - dx). For
i=l,2 , . . .

Di+l q =

i

Di + PI if D, < 0 (pattern 2 (3))
Di + pz otherwise (pattern 4).

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

Fast Line Scan-Conversion l 379

To distinguish between patterns 2 and 3 requires the test

Di< i$y - dx)
if 0 I dy/dx < 1.
if i 5 dy/dx I ;

giving pattern 2 if the test is passed, pattern 3 if not.

The above algorithm was implemented and Pascal code was given as Figure 3
in [31]. It was shown to be almost twice as fast as Bresenham’s original algorithm
if pixel I/O was ignored in both cases.

3. SYMMETRY WITH DOUBLE-STEP

We again consider line segments between (0,O) and (dx, dy) where dx and dy are
integers. The line segment is therefore

0 I x I dx.

If the scan-conversion is started at (0, 0) then the sequence of coordinates (or
set of pixels) is denoted by

(x0, Yo), (Xl, Yl), - * *, t&l, Yn) (2)

wherexi=i,i=O,l,..., n with (x0, y,,) = (0, 0) and (x,,, yn) = (dx, dy). From
the properties of the scan-conversion in the Bresenham sense (see [31]) it follows
that

I Yi - Y(G) I = $3 i = 0, 1, . . . , n.

If the scan-conversion is started at (dx, dy) then similarly the sequence

(4, Yh), (xi, Yl), * * *, (XA, Y3 (3)

is generated where again XI = a’ - i, i = 0, 1, . . . , n with (x6, ~6) = (dx, dy) and
(x;, y:) = (0, 0). This sequence satisfies

lY&f - Y(d) I 5 $, i = 0, 1, . . . , n.

It was noted in Gardner [18] that the scan-converted lines were symmetric
around the midpoint of the line if slight deviations from the line scan-converted
by Bresenham’s algorithm were accepted. These deviations occur when the line
crosses the vertical lines going through the integer x coordinates exactly midway
between two integer y values. It was furthermore noted in [9] that the lines were
palindromic, i.e., symmetric, if dx and dy were relative prime. Here we formalize
this symmetry principle.

THEOREM 1. Let y = (dy/dx)x, 0 I x 5 dx define a line segment with integer
endpoints (0, 0) and (dx, dy). Then the pixel sequences defined by (2) and (3)
satisfy

(Xi, .Yi) = (XA-i, YA-i),

unless (yi - y(xi)) = f in which case

(Xi, Yi - 1) = txrt-i, YL-i).
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

380 l J. G. Rokne et al.

PROOF. Since the x (3:‘) directions are incremented (decremented) one
unit at a time it is clear that xi = XL, i = 0, 1, . . . , n. Assume first that
lyi - y(Xi) 1 # f, i = 0, I, . . . , n. Then the closest integer point to y(Xi) is yi.
Similarly yAm1, is the close,& point to y(xA-i). Since X, = x;-i it follows that yi =
yh-i, i = 0, 1, . . . , n.

If) yi - y(xi) 1 = $ for some i, then, since the relation “closest point” is defined
to be the 5 relation, it follows that if yi is closest to y(xi) in the positive y
direction, then y;-i is closest in the negative y direction and y:-i - yi = 1. q

Based on this theorem it is clear that only the first half of the line segment
needs to be scan-converted. The second half may be copied as the first half is
generated, but in reverse order except when the relation 1 yi - y(xi) I = i is true.

The awkward case of 1 J/i - y(s)) = i for some i, called a i crossing in the
sequel, is now considered in detail.

First of all we note t.bat if this case occurs, then dx is even. In fact if
I yi - y(xi) I = f, then the original line segment from (0, 0) to (do, dy) passes
through either (xi, yi + f) or (xi, yi - i) where Xi and yi are both integers.
We only consider the first case where the intercept is (xi, yi + f) since the
second case gives the ident.ical result. Clearly the triangles formed by the points
(0, 0), (xi, yi + $) and by the points (0, 0), (dz, 0), (dx, dy) are congruent. It is
immediately clear that (cJy/dz) = (yi + $)/Xi. From this it follows that 2(dy)xi -
dx(2yi + l), which implies that dx must be even since dx, dy, xi, and yi must all
be integers.

The condition that dx is even is only necessary. A further sufficient (but not
necessary) condition is that dy is odd, which can be verified by a simple calculation
of y(dx/2).

The decision procedure to be employed is therefore:

(i) If dx is odd then scan-convert the line from (0, 0) to (dx, dy) using the
double-step and symmetry ideas as discussed above, ignoring tests for $
crossings.

(ii) If dx is even and dy i.s odd then scan-convert the line from (0,O) to (dx, dy)
using the double-step technique and symmetry, while testing for f
crossings.

(iii) If both dx and dy are even then find largest common factor 2k, scan-convert
the line-segment (0, 0) to (dx/2k, dy/2k) and repeat 2k times, thus reducing
this case to one of the cases (i) or (ii) above.

A technique similar to the above case (iii) was employed in [15] to develop a
recursive scan-conversion algorithm. The algorithm was only valid for lines
whose x extent was a power of 2.

We now consider the e:ffect of f crossings. When a $ crossing has been found
then this might imply a further symmetry of the line. Using the same arguments
as in Theorem 1 it is easy to see that the initial scan-converted pixel pattern
may be reversed and copied starting at the $ crossing. Although this may be used
to speed up the algorithm further it is not used here.

The checking for + crossings may be streamlined when the double-step algo-
rithm is used in conjunction with the symmetry idea. Consider therefore Fig-
ure 2 and assume 0 5 (dy/dx) 5 t (the other cases may be treated in a similar
ACM Transactions on Graphics, Vd. !3, No. 4, October 1990.

Fast Line Scan-Conversion 381

xi x1+1 xi+2 xi xi+l xi+2 xi xitl xit2

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 2. Testing for $ crossings (- , - no i crossing;-possible i crossing).

dx even
dy even

dx even dx odd
dy odd dy odd

Fig. 3. Midpoint termination.

dx odd
dy even

manner). In this figure the possible range of values of y(~i+~) is indicated under
the various constraints and cases given a yi+7 (7 = 0, 1, 2). Each of the three
possible patterns are now treated separately.

Pattern 1. From the previous double-step it follows that 1 y(Xi) - yi 1 < f (if
this were not true, then a i crossing would have been found and the symmetry
pixels would have been plotted). In the current step, the decision procedure has
already decided that y(ri+p) - yi+z < $. Hence also y(xi+l) - yi+l < $. Thus no
additional test is necessary for Pattern 1 (see Figure 2a).

Pattern 2. In Pattern 2, similarly, no test is needed at Xi. In deciding that this
was Pattern 2 we have y(~i+~) - yi+l < $, hence a $ crossing cannot occur at ri+l.
It is, however, necessary to test if y(xi+z) - yi+z = $ (see Figure 2b). If true, then
the patterns are symmetric about xi+z.

Pattern 3. Again no test is necessary at Xi* However, it is necessary to test if
Y(%+l) - .Yi+l = f* If this is true, the already scan-converted line is symmetric
about xi+l. Whether it is symmetric or not, it is clear that y (xi+p) - yi+z # $ since
otherwise a Pattern 4 would occur, which cannot happen since y(xi) - yi < $ and
y(xi+l) - yi+l > f. This means that no further tests are needed (see Figure 2~).

The overhead for the half-way crossing test is therefore less than one test per
double-step when the checking is necessary.

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

382 - J. G. Rokne et al.

f I
Xcurr := Xcurr I 2 ’
Ycurr := Ycurr I 2
REPEAT := REPEAT + 1

\, /
A

Plot line from
to (Xcurr, Ycurr)
while testing for

t \
Plot line from (0,O)
to (Xcurr, Ycurr)
without testing for

0 End

Figure 4a

Xcurr := 2 l Xcurr
Ycurr := 2 l Ycurr

The termination check occurs at the midpoint of the currently considered line
segment. The situation here is shown in Figure 3. The four cases in Figure 3
depend on the parity of dx and dy.

4. ALGORITHM DESCRIPTION

An algorithm incorporating d.ouble-step and symmetry ideas was developed. This
algorithm is now described u,aing the flowcharts given in Figures 4(a) and 4(b).

Figure 4a describes the parity checking on dx and dy discussed in the last
section. This parity checking is performed in order to avoid some of the $ crossing
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

Fast Line Scan-Conversion l 383

xend :I (dx- 1) / 4;
pixels leftover := (dx-1) mod 4:

in&? :I 4 * dy - 2 ’ dx;

[plot (al, bl); plot (a2. b2); 1

c := 2 * dy;
incrl :- 2 * c;

D := incrl - dx;

Plot Line (al, bl) to (a2, b2)
(0 <r slope <- l/2)

This may be Qenedised to
axis of ~reatesl movemenl

Pixels plotted in groups of 4
Plot last 1. 2 or 3 pixels separately

Plot first and last pixels

El

These regions omitted if
not testing for half crossings

, J J

Figure 4b

tests. The flowchart includes the repeat loop for the case that both dx and dy
have a common factor 2k for some k.

If the cost of copying the pixels that are repeated in the patterns exceeds the
cost of regenerating the pixel sequence, then the check for even dx and dy may
be omitted, together with the pattern repetition part. This would result in a
different flowchart, which is not shown here since it is easily constructed.

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

384 l J. G. Rokne et al.

The parity checking on d.x and dy may be omitted altogether for an easy
implementation of the algorithm by always checking for * crossings in the
flowchart in Figure 4b.

Figure 4b contains a condensation of the algorithm to scan-convert lines
without checking for f crossings (omitting boxes within the dashed lines) and
with checking for f crossings (including boxes within dashed lines).

In the first case the dashed boxes are omitted and the i crossings are not
tested for. The flow of the algorithm is maintained by joining points a - a and
b - b as marked on the flowchart and omitting the flowchart elements con-
tained in the grey areas. The algorithm is essentially the algorithm described in
Figure 3 of [31] with the addition of backward plotting patterns. The backward
patterns are described via a coordinate system rotated 180” with respect to the
original coordinate system in order to reverse plotting direction. Patterns in the
original coordinate system are called forward patterns and in the rotated coordi-
nate system backward patterns. If there are no f crossings, then the forward
pattern sequence in the original coordinate system and the backward pattern
sequence in the rotated coordinate system are the same as shown in Theorem 1.

In the second case the i crossings are tested for by including all the items of
the flowchart as given in Figure 4b. The added features incorporate the discussion
of the i crossings with respect to the forward Patterns 1,2, and 3 in the previous
section.

Since forward Pattern 1 ca.nnot have any f crossings, it follows that the reverse
pattern is always backward Pattern 1 and no checking is necessary.

In forward Pattern 2, we bad to check to see if the last pixel of the pattern was
a $ crossing. If this were the case, then the last pixel of the backward double-
step would be set opposite to the expected pattern, that is, backward Pattern 1
instead of backward Pattern 2.

Similarly we have to check if the middle pixel is a f crossing in forward Pattern
3. If so, then the middle pixel has to be set to the opposite pixel in the reverse
pattern, thus generating backward Pattern 2 instead of backward Pattern 3.

It is also possible to use the $ crossings as symmetry centers and simply repeat
pixel sequences when they have been found. This has not been incorporated here.

5. COMPLEXITY

For the complexity discussion we assume that the algorithm has been imple-
mented as in Figure 4a, without the repeating loop if dx and dy are both even.
This means that in the average case the $ crossings only have to be checked for
in 50 percent of the cases. It is furthermore assumed that the f crossings are
checked and corrected for ex.actly as in Figure 4b. This means that the further
possible symmetries around .!j crossings are not used. The pixel sequences after

the basic symmetry.
2 crossings are therefore recalculated, and no use is made of symmetry beyond

The complexity is also measured with respect to lines between (0, 0) and
integer endpoints (dx, dy). Furthermore, it is assumed that 0 I (dy/dx) 5 f since
the results are the same for other slopes.
ACM Transactions on Graphics, Vol. 9, No.. 4, October 1990.

Fast Line Scan-Conversion 385

The scan-conversion of the above line requires (dx) additions and 2(dx) tests
using the original Bresenham algorithm.

In [31] it was shown that scan-conversion using the double-step algorithm
required L(&)/BJ additions and 5L(dx)/4J tests on the average.

Except for the increment size and the equality tests in the dashed boxes of
Figure 4b, the repetitive loop is exactly as the loop in [31]. This means that the
symmetric double-step algorithm requires L(h)/41 additions and 5L(dx)/8J tests
if no checking for f crossings is performed. When checking for i crossings is
done, this requires on the average dx/4 * $ * f * $ = 0.02 * dx additional tests, a
negligible extra cost.

6. NUMERICAL RESULTS

Bresenham’s algorithm, the double-step algorithm, and the symmetric double-
step algorithm were implemented in C on the Apple Mac+ computer and some
tests were run. The results given in Tables I, II, and III were obtained. The lines
were drawn from the origin (0, 0), in each case to the coordinate of the endpoint
as given in the first column of the tables. The lines form the first quadrant
spokes of wheels centered at the origin having radii 10,100, and 1000 respectively.
The overhead was measured for each algorithm by counting one for each control
statement executed (1 for each if, 1 for each assignment, etc.). Where the
algorithms did equivalent work, as in calling the set pixel subroutine, no overhead
was recorded. The lines in Table I are 10 pixels long, 100 pixels long in Table II,
and 1000 pixels long in Table III. For comparison purposes the ratio of counts
between Bresenham and double-step and between Bresenham and symmetric
double-step were also computed.

It can be seen that for the longer lines the symmetrical double-step algorithm
has between 3 and 3.9 times less overhead than Bresenham’s original algorithm
depending on the line angle. The double-step has between 1.3 and 2 times less
overhead as would be expected from the foregoing analysis. The overhead varies
with both line angle and line length. Indeed, short lines produce noticeably less
speed-up than long lines, as would be expected.

It is acknowledged by the authors that in practice, in a hardware line-drawing
algorithm, the bottleneck is currently in the time taken to set a given pixel, and
hence the reduction in overhead may not produce as significant a reduction in
the total time required to raster a given line.

In Tables I, II, and III the following abbreviations are used:

Bres Bresenham’s algorithm
Doub Double-Step
Symm Symmetrical Double-Step

In the previous section our analysis for the additions and tests showed that
the Bresenham algorithm would cost roughly 3.0dx, the Double-Step 0.875dx,
and the Symmetrical Double-Step 0.875. This results in theoretical ratios of

Bres/Doub 1.71
Bres/Symm 3.43

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

386 l J. G. Rokne et al.

Table I. 10 Pixel Lines

Endpoint Bres

(10, 0) 31
640) 29
e-4 1) 29
(%a 29
a31 29
(%4) 29
(8,4) 27
655) 27
(7,6) 25
(797) 25
(6,7) 29
(598) 31
(4,9) 33
(39% 33
c&9) 33
(1,9) 33
(0,9) 33

Times
-

Doub

- 29
27
28
29
30
31
31
30
26
25
29
33
34
33
32
31
30

Symm

24
21
21
23
23
23
26
26
23
23
26
29
26
26
26
24
24

Rel. Times

Bres/Doub Bres/Symm

1.1 1.3
1.1 1.4
1.0 1.4
1.0 1.3
1.0 1.3
0.9 1.3
0.9 1.0
0.9 1.0
1.0 1.1
1.9 1.1
1.0 1.1
0.9 1.1
1.0 1.3
1.0 1.3
1.0 1.3
1.1 1.4
1.1 1.4

Table II. 100 Pixel Lines

Endpoint Bres

Times
-

Doub Symm

Rel. Times

Bres/Doub Bres/Symm

(100, 0) 211 119 68 1.8 3.1
(9% 8) 209 125 7 1.7 2.8
(98, 17) 207 134 84 1.5 2.5
(96, 25) 203 140 90 1.5 2.3
(W34) 197 145 93 1.4 2.1
(9% 42) 191 151 94 1.3 2.0
(86,‘w 183 142 90 1.3 2.0
(81957) 173 130 76 1.4 2.3
(7% 64) 163 107 67 1.5 2.4
(70,70) 151 89 54 1.7 2.8
(‘X-3 167 110 70 1.5 2.4
(57,81) 177 126 79 1.4 2.2
(50,86) 187 144 95 1.3 2.0
(4% 90) 195 154 97 1.3 2.0
(34,931 201 148 96 1.4 2.1
(2% 96) 207 143 93 1.4 2.2
(17,98) 211 137 87 1.5 2.4

03, 99) 213 128 79 1.7 2.7
(0, 99) 213 120 71 1.8 3.0

These ratios are not achieved for short lines. However, they are approximated
reasonably well in Table III. The reason for this is that both the Double-Step
and the Symmetrical Double-Step algorithms incur overhead over and above that
of the Bresenham algorithm. Hence the theoretical speed-up is only attained
when this overhead is amortized over longer lines.
ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

Fast Line Scan-Conversion l 387

Endpoint Bres

(1000,0) 2011
(996,87) 2003
(984,173) 1979
(965, 258) 1941
(939, 342) 1889
(906,422) 1823
(866,499) 1743
(819,573) 1649
(766,642) 1543
(707,707) 1425
(642,766) 1547
(573,819) 1653
(500,866) 1747
(422, 906) 1827
(342,939) 1893
(258,965) 1945
(173,984) 1983

(87, 996) 2007
(0, 99% 2013

Table III. 1000 Pixel Lines

Times Rel. Times

Doub Symm Bres/Doub Bres/Symm

1019 518 2.0 3.9
1102 599 1.8 3.3
1176 674 1.7 2.9
1241 741 1.6 2.6
1299 801 1.5 2.4
1347 774 1.4 2.4
1252 728 1.4 2.4
1083 607 1.5 2.7
909 498 1.7 3.1
725 373 2.0 3.8
912 501 1.7 3.1

1086 610 1.5 2.7
1254 734 1.4 2.4
1350 777 1.4 2.4
1302 804 1.5 2.4
1244 744 1.6 2.6
1179 677 1.7 2.9
1105 602 1.8 3.3
1020 521 2.0 3.9

7. CONCLUSION

Three improvements to the scan-conversion of lines have been discussed. These
are the double-step technique previously reported in [31], the use of line symmetry
of lines with respect to scan-conversion direction first discussed by [18] and the
combination of the above two techniques into a new efficient algorithm. The
latter algorithm speeds up the scan-conversion (in the sense of the computational
effort) of a line by a factor of roughly three over the original Bresenham version
when the lines are sufficiently long.

REFERENCES

1. ASAL, M., SHORT, G., PRESTON, T., SIMPSON, R. ROSKELL, D., AND GUTTAG, K. The Texas
Instruments 34010 Graphics System Processor. IEEE Comput. Gr. Appl. 6 (Oct. 1986), 24-39.

2. BARROS, J., AND FUCHS, H. Generating smooth line drawings on video displays. In SZGGRAPH
‘79 Proceedings. Comput. Gr. 13 (Aug. 1979), 260-269.

3. BELZER, K. Comment on ‘An improved algorithm for the generation of non-parametric curves’.
IEEE Trans. Comput. C-25 (Jan. 1976), 103.

4. BOTOTHROYD, J., AND HAMILTON, P. A. Exactly reversible plotter paths. Australian Comput.
J. 2 (1970), 20-21.

5. BRESENHAM, J. E. Algorithm for computer control of digital plotter. IBM Syst. J. 4 (1965),
25-30.

6. BRESENHAM, J. E. Incremental line compaction. Comput. J. 25 (Jan. 1982), 116-120.
7. BRESENHAM, J. E. Run length slice algorithms for incremental lines. In Fundamental Algo-

rithms for Computer Graphics, R. A. Earnshaw, Ed. NATO AS1 Series, Springer Verlag, New
York, 1985, 59-104.

8. BRONS, R. Linguistic methods for the description of a straight line on a grid. Comput. Gr. Image
Process. 9 (1979), 183-195.

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

388 l J. G. Rokne et al.

9. CASTLE, C. M. A., AND PITTE‘WAY, M. L. V. An application of Euclid’s algorithm to drawing
straight lines. In Fundumentai Algorithms for Computer Graphics, R. A. Earnshaw, Ed. NATO
AS1 Series, Springer Verlag, New York, 1985, 135-139.

10. CASTLE, C. M. A., AND PITTE:U~AY, M. L. V. An efficient structural technique for encoding
‘best-fit’ straight lines. Compur-. J. 30 (1987), 168-175.

11. DANIELSSON, PER E. Incremental curve generation. ZEEE Trans. Comput. C-19 (Sept. 1970),
783-793.

12. DORST, L. Discrete straight lint, segments: Parameters, primitives and properties. Ph.D. thesis,
T. H. Delft, June 1986. Offsetdrukkerij, Kanters BV, Ablasserdam, Holland.

13. EARNSHAW, R. A. Line tracki.ng for incremental plotters. Comput. J. 23 (1980), 46-52.
14. FIUME, E. L. A mathematical semantic and theory of raster graphics. Tech. Rep. CRSI-185,

Computer Systems Research Institute, Univ. of Toronto, Toronto, Canada, 1986.
15. FOLEY, J. D., AND VAN DAM, ,4. In Fundamentals of Interactive Computer Graphics. Addison-

Wesley, Reading, Mass., 1982.
16. FREEMAN, H. Boundary encoding and processing. In Picture Processing and Psychopictorics.

B. S. Lipkin and A. Rosenfeld, Eds., Academic Press, New York 1970,241-266.
17. FREEMAN, H. On the encoding of arbitrary geometric configurations. IRE Trans. EC-102 (1961),

260-268.
18. GARDNER, P. L. Modifications of Bresenham’s algorithm for displays. IBM Tech. Disclosure

Bull. 18 (1975), 1595-1596.
19. JORDAN, B. W., LENNON, W. ,J., AND HOLM, B. C. An improved algorithm for the generation

of non-parametric curves. IEE.E Trans. Comput. C-22 (Dec. 1973), 1052-1060.
20. MCILROY, M. D. A note on discrete representation of lines. AT&T Tech. J. 64 (Feb. 1985),

481-490.
21. PILLER, E. AND WIDNER, H. .Real-time raster scan unit with improved picture quality. Comput.

Gr. 14 (1980), 15-38.
22. PITTEWAY, M. Algorithm for drawing ellipses or hyperbolae with digital plotter. Comput. J. 10

(1967), 282-289.
23. PITTEWAY, M. Algorithms of (conic generation. In Fundamental Algorithms for Computer Gruph-

its, R. A. Earnshaw, Ed. NATO AS1 Series, Springer Verlag, New York, 1985, 219-237.
24. PITTEWAY, M. L. V., AND GREE:N, A. J. R. Bresenham’s algorithm with run line coding shortcut.

Comput. J. 25 (1982), 114-115.
25. RAMOT, J. Non-parametric curves. IEEE Trans. Comput. C-25 (Jan. 1976), 103-104.
26. REGIORI, G. B. Digital computer transformations for irregular line drawings. Tech. Rep. 403-

22, Department of Electrical Engineering and Computer Science. New York Univ., Apr. 1972.
27. RUBIN, F. Generation of non-parametric curves. IEEE Trans. Comput. C-25 (Jan. 1976), 103.
28. SPROULL, R. F. Using program transformations to derive line-drawing algorithms. ACM Trans.

Gr. 1 (Oct. 1982), 259-273.
29. SUENAGA, Y., KAMAE, T., ANI) KOBAYASHI, T. A high-speed algorithm for the generation of

straight lines and circular arcs. IEEE Trans. Comput. C-28 (1979), 728-736.
30. THOMPSON, J. R. Straight lines and graph plotters. Comput. J. 7 (1964), 227.
31. WV, X., AND ROKNE, J. G. Double-step incremental generation of lines and circles. Comput.

Vision, Gr. Image Process. 37 (Mar. 1987), 331-344.
32. WV, X., AND ROKNE, J. G. Double-step incremental generation of canonical ellipses. IEEE

Comput. Gr. Appl. 9 (May 1989), 56-69.
33. WV, X., AND ROKNE, J. G. 011 properties of discetized convex curves. IEEE Trans. Pattern

Anal. Mach. Zntell. 11 (Feb. 1989), 217-223.

Received February 1987; revised March 1988; accepted July 1989

Editor: L. Guibas

ACM Transactions on Graphics, Vol. 9, No. 4, October 1990.

