Thsi i o e s

Straight-Line Algorithms|

Graeme W. Gill
Labtarn Australia

This class of algorithms

extends Bresenham's _

integer straight-line
algorithm to generate & i

more than one pixel per
inner loop, thus reducing

inner loop overhead.

hough the emphasis in computer graphics research has
.d away from line-based object representations. users
suill expect all modern graphics dispiay devices to draw straight
lines efficiently. The problem of digiuzing a line into a uniform
grid (raster) has many solutions. Bresenham’s algonthm' uses
only integer arithmetic and generates one pixel per inner loop.
There are many acceleration techniques for it.

The emergence of RISC microprocessors offers new choices
for implementing cost-effective. high-performance graphical
lgorithm [descnibe
eveloped to help make a general-purpose CPU com-
petitive in speed with more specialized graphics processing hard-
ware. It is based on Bresenham’s sing integer algorithm.
bul it improves pixel-generahion et y by generating four
ixels per loop. Italso permils the ing of adjacent horizon-
tal pixels 1o be compressed inta more efficient multipixel wrnite
instructions that are available in the most popular CPLi/frame
buffer architectures, The algorithm achieves stifl greater effi-

=Another Quad Step Inere-
proceedings of Ausgr aph 9.

(721716948400 £ 1994 [EEE

.J..v
S a0

N-Step Incremental

S T s e BT B

EREST SRR

SRS ARk,
I ERARSS

ciency by exploiting the observation that some four-pixel se-
quences are more likely to occur than others.

Bresenham's straight-line algorithm is the first in a family of |

N-step algorithms. In addition to {llustrating the form of these al-
gorithms with the quad-step case (N =4), this article describes a
technique for generating other members of the family. Figure 1
lists the variables used here. together with an outline of Bresen-
ham's algorithm for lines in the first octant. The nomenclature is
similar 1o that used by Bresenham ina 1987 CG&A article.®

Quad-step algorithm
Bresenham's algorithm shows that the sign of E (the error
term) exactly pr 5 the pixel to be written at any step in the
process of rasterizing a line. Therefore, to illustrate the quad-
step case. we warnlt a lest set that predicts the axial and diagonal
moves up o four pixels in advance. The possible combinations
of four axial or diagonal moves are

KXXX XXXD XXDX XXDD XDXX XDXD XDDX XDDD
DXXX DXXD DXDX DXDD DDXX DDXD DDDX DDDD

where X represents an axial move and plot, and D representsa

|EEE Computer Graphics and Applications

Figure 1. Variables and outline of Bresenham’s algorithm for lines in
the first octant (inmer loop).

e
Q =maxlx —x0l, yl -0l 7
P =minlxi -0, iyl - yOi
Da is the frame store pixel address. _
M1 s the address increment needed to move the pixel address |
in the axial direction. _
M2 is the address increment needed to move the pixel address
in the diagonal direction.
E -is the discriminator or error term. _
=2P-Q \
K1 is the error increment for an axial move (K1 will be 2 0) _
=2P
K2 s the eror increment for a diagonal move (K2 will be = 0).
=2(P-Q) _
C is the loop counter.
=Q
write pixel at {Da)
while C1=0{
while E<0and C!=0{ I doan axal move *f
c=C-1 _
Da=Da+ M /* move the address axially */
E=E+Ki [/ adjust the error term */
write pixel at (Da)
i
while Ez0and Cl=0 /" do a diagonal move °/
C=C-1
Da=Da+ M2 /* move the address diagonally */
E=E+ K2 7 adjust the error term */
write pixel at (Da)
}
| |
|

diagonal move and plot. At each step in the four moves, £ must
be of the appropriate sign to give the next step. In addition. the
range of E must stay within the bounds K2 < E < K1 asis the case
in the single-step algorithm.

For each quad move—called a glyph—we can generate a set
of equations that must be satisfied for that glyph 1o be nextin
the sequence making up a line. For example, XDXX must sat-
isfy the equations

E<0 for X
E+Kl1z0 for X.D
E+Kl+K2<0 forX.D,X
E+2K1+K2<0 forX.D.X. X
K2=E=<Kl at all times

These conditions can be simplified to the following:

if K1€-K2 <2K1
then -K1 £ E < -2K1-K2
else if 2K1<—K2 < 3K1
then-K1<E<0

The structure of the simplified conditions shows that choosing a
glyph depends on the ratio of K1 to K2Z—that s, on the slope of
the fine. This implies that we must cla ines not only into
their appropriate octant but also into their appropnate suboctant
to ensure an unambiguous choice of glyph. The conditional
equations for the glyphs XXDD and DDXX show that these

N-Step Incremental Straight-Line Algarrthm

Figure 2. The 14 usable glyphs.

———————

_ Pattern

_ Pt
_ Giyph Emor change \ 7
_ DDOD 4K2 m\a |
_ DODX K1+3K2 o |Q\b

_ XDDD K1+3K2

_ DDXD K1+3K2 @\.1. -

| DXDD K1+3K2

_ XDDX 2Ki+2K2 e

7 DXDX 2Ki+2K2 G \?d\ 7
2K1 +2 K2

_ XOXD

7 DXXD 2K1+2K2 W\i |
XDXX 3Kl +K2 _

_ XXDX 3K1+K2 |
g\'uolo.t _

_ DXXX 3K1+K2 of » _

. XXXD 3K1+K2 e = 4

_ XXX 4 K1 Geo-o-0-8 _

conditions can never be met. In other words. these glvphs are
never generated in drawing a straight line with the same pix-
elization as Bresenham’s algorithm. This leaves 14 usable
glyphs. Figure 2 illustrates them, together with the change iner-
ror term when the glyph is plotted.

Doing the arithmetic for all the glyphs ultimately generales
{he suboctant classification illustrated on the next page by Fig-
ure 3 and its associated tabular data and by Table 1, which
shows the conditions for choosing the next glyph in each sub-
octant. Figure 4 shows the overail organization of the algo-
rithm. and how a line is classified first intoits octant. then into
its suboctant, with cach suboctant making use of one of five
possible glyphs.

There are some restrictions on the sequence of glyphs within
a2 suboctant. For instance. a line in suboctant 1 will never have
four or five Xs in a row. because such a line would be in suboc-
tant 0. So XDXX is never followed by AXXD or XXDX. We
can work this out by looking at the condition equations for the
concatenation of all combinations of suboctant glyphs: but ad-
ditional information is obtained by simulating the quad-step
routine, running through a set of lines with a desired distribu-
tion of slopes. and keeping a record of which glyph in a suboc-
1ant follows another. The examples in thi article use a uniform
distribution of slopes, in the absence of de nitive slope-distri-
bution information for “typical” applications.

In addition to showing which glyphs never follow one an-
other. a simulation gives some indication of the probability of
one particular glyph following another. This allows the deci-

Y B Feature Articlke -
L
1. Figure 3. Suboctant
-_ cmibcadon.. | ¢ g
3 11
Suboctant 5
4:3
Suboctant 4
32 Suboctant
Suboctant3 ~ number @ Ki/K2 Condition
Suboctant 2 5 o= -3K2<KI 5
- 1 4 2103 -2k2<Kl<-3K2!
4. | " Suboctant 1 3 102 -K2<Kls-2K2 :
14 1 2 12t01 K1 s-K2<2K1
1 Suboctant 0 1 1/3 10 1/2 : 2K1 < -K2 < 3K1
& o 0 01013 3K1s-K2
K Table 1. Glyph decision conditions within suboctants plus nexi-glyph probability.
1. Decision Deciston |- -5 7 : ; Tt
; ..._ Suboctant Glyph Point Glyph Point Giyph
o | E< -3K1 sE< -2K1 2Ec T $E< 0 sE
HXAX XXXD XXDX KD DO
04,321 o1 012 02,31 03421
1 | E< -2K1 <E=< -K1 <E=< 0 <E< -2K1-K2 <E
XXXD XXDX | XDXX DK DXXD
1.0 21 243 43 1.0
2 E< | =K1 <E< “2K1-K2 <E< 1] <E=< ~K1-K2 <E
XXDX 7 HDXX XDXD DXXD DXDX
3412 43 201 0.1.2 4231
3 E< _ _Ki-K2 | <E< | O <E< | K2k | <E< | -K2 <E
XDXD XDDX DXDX DXDD DOXD
B) 02,13 _ 43.2 | 243 0.1 1,032
4 | E< _ -K1-2K2 | sE< _ 0 <E< -K2 sE< -2K2 <E
7 xoDX | | xDDD DXDD DDXD DDDX
34 _ 01 201 23 34
. 5 E< _ 0 sE< | -K2 2E=« | -2K2 <E< |-3K2 <E
XDDD | DxXDD DDXD DDDX DDDD
| 41023 4213 432 43 40123
sion tree after nmn: glyph plot to test £ against glyphs in de- atimeis that if we have separate code for the x- and y-driven oc-
creasing order of probability. Looking again at Table 1. wecan tants. then in the x-driven octants it becomes _uo&..E..n to process
see a summary of this information from a simulation for linesin a series of plots connected by axial moves as a single multipixel
a 2.048-square gnd. da information appears as a list of the plot. For example, if we use a 32-bit word, byte-addressable
number of the glvphs in that suboctant. in the order of their machine to execute the quad algorithm and if there is one pixel
B frequency of following the given glyph For example, in sub- per byte. then we could implement the glyph DXXX as a diag-
i octant 1. glyph 2 (XDXX) has the list 2. 4, 3. This means that onal move. followed by a four-pixel write, followed by a triple
- it is most frequently followed by XDXX. DXXD. and DXXX, axial move. This means that near-horizontal lines will execute
and that it is never followed by XXXD and XXDX. I have with fewer internal steps and memory operations. By prealign-
runa m::.._mq simulation on a 16.000-square grid to compare the ing x-driven lines to 32-bit boundaries, we can also do this on
results pixel by pixel with the output of a conventional single- machine architectures that enforce strict data alignment.

. step routine. The results verified that the quad-step imple- If itis important to always draw a line from the start point to
mentation behaves the same as Bresenham’s integer line the end point. then three rather than two different versions of
algorithm. . the code are required: one for y-driven lines, one for x-driven

An important advantage in drawing more than one pixel at lines toward the right (+x), and one for x-driven lines toward the
IEEE Computer Graphics and App

R B D

N-Step incremental Straight-Ling Algarthm

e Entry point:
Set up line as for the single-step line

Determine the octant by checking if line:

By 3 is +x, —x, or y drven.

e Suboctant

Calculate the decision-tree decision
points and efor change values for this
suboctant

e e AT i

Enter decision iree to choose the first
giyph from suboctant glyphs 0-4
Glyph:

Test loop counter and jump to line tail
code if it is zero

By 5

Exit

Write 4-pixel glyph as efficiently as
possible

[Adst the eror temn |
Decrement the loop counter

Enter 1-0f-2 to 1-0f-5 decision tree 1o
choase the next gyph

Aaaa

Figure 4. Stracture of the full
quad-step algorithm.

{Ta other octants) _

_—I Octant: |
mmﬂmmmmmm |H J
By 6 - A ¥ (Toother suboctants)

k (To a ghyph in this
suboctant)

(To a glyph in this
suboctant)

left {—x). This is because a processor will write multiple pixels
w in one direction from a given address. The full quad-step algo-

rithm referred to in the rest of this article is this more general
¥, +x,and —x version,

There is symmetry between the X and D moves. For exam-
ple, suboctants 0. 1. and 2 mirror octants 5, 4, and 3, respec-
tively. Bresenham* demonstrated this analytically. This
symmetry works as a coding cross-check: itcan also halve the
code size needed for the algorithm. If the consecutive horizon-
tal pixel code is not implemented, then we can fold suboctants
3.4, and 5 into suboctants 2, 1, and 0. This variation is referred
to as the compact quad-step algorithm. The following code frag-

) ment illustrates this folding:

. if—-K2=K1then [*ifwe are in suboctants 5, 4, 0r 3%/
K1=-K1 /* reflect suboctant about x = 2y axis *f
K2=-K2

exchange (K1, K2)
exchange (M1, M2)
E=-E-1 * reflect error */

b

One advantage of using the same discr or as Br ‘s
algorithm is that we can use the same techniques for making the

| May1994

line retraceable. For instance, We could subtract 1 from E when
dy <03

Figure 5 on the next page illustrates the glyph decision con-
ditions graphically for the qu ad-step case. We can visualize the
cases of glyph lengths from 1 to 3 within this illustration by co-
alescing the regions that contain the shorter glyphs. From this.
we can see that a triple-step algorithm needs eight glyphs and
four suboctants, and a double-step algorithm needs four glyphs
and two suboctants.

Performance

Table 2 presents various metrics of a single-step Bresenham
algorithm, the compact quad-step algorithm, the full quad-step
algorithm, and the eight-suboctant algorithm.* The estimated
costs per pixel equal the total of accumulated primitive counts
per pixel. recorded in software simulations of the algorithms.
The primitive unit costs very roughly correspond to those of an
Intel 80960K A/B processor,*” but should apply to many others.

Initially, I implemented the algorithm for an Intel B0960K
series processor. [tems 810 10 of Table 2 show the results of run-
ning at 20 MHz with 2 packed 8-bit/pixel frame store, the code
and frame store memory system having three wait states. These
results are the ultimate pixel-rendering rate (factoring out the

“

o

L
1!

vt ol
PR e

Figure 5. Quad-step decisions _ Suboctant
within an octant. | 1.00
(Easa 0.75
fraction of K1) 0.66
0.50
033
025
E .00
-0.25
-0.33
(Easa
fraction of K2) ~0.50
-0.66
-0.75
A -1.00
Slope = Ki = 0.0
= -1.0

setup overhead) for lines enumerated on a large prid. Items 11
to 13 show the results of a subsequent implementation, fine-
tuned for the more recent 80960CA processor. The B0960CA
ran at 25 MHz with a memory system having two wail states.
The improvement in performance between the single-step and
quad-step algorithms is close to the rough estimate predicted by
the primitive costing. The compact quad-step algorithm is ap-
proximately one-fourth the size and operates with some per-
formance penalty compared to the full algorithm.

The actual implementation tested uses the quad-pixel algo-
rithm only for lines longer than a minimum length. for example,
12 pixels. This approach minimizes the impact of the routine’s
slightly greater setup averhead on short lines. A convent 1onal
one-pixel-at-a-ume routine is needed anyway, Lo clean up after
the maximum four pixels have been processed. and possibly to
prealign the start of the x-driven lines. thereby avoiding word
boundary crossings.

On the machine tested, ail the cade for a suboctant fits into
{he on-chip instruction cache. This frees the memory interface
for pixel writes. It also ensures that the speed is not limited by
the rate at which instructions can be fetched from main mem-
ory—an important consideration if larger numbers of steps per
inner loop are contemplated.

Note that the 80960K results are limited primarily by the
decision-making (rasterizing) process rather than the memory
bandwidth { pixel wrntng). The 80960 A, on the other hand.
represents a trend in modern processors in which improvements
in on-chip operational speed OULSIIp IMPrOVEMENLS 10 off-chip
access time. Thus, the B0960C A performance uses % percent of
the theoretical memory bandwidth., while the B0960K uses only
54 percent. The 82 percent usage by the full 80960C A quad-

10
0.0

066 075
-0.33-0.25

stepalgorithm indicates that internal operation overhead is still
significant. Future developments in processors seem likely to
further improve internal speed without proportionally Im- ‘g
proving memory access. Thus, the most important attribute of .- e
the full quad-step line algorithm might be the extra memory %
bandwidth it provides. : 3 : 6|

Comparison with other algorithms
An algorithm that takes advantage of pixel runs in the axial
or diagonal direction is generally least efficient when the slope
of the line is such that the runs become very short.* It is most ef-
ficient when the runs are long. In contrast, an N-step algorithm
provides an almost constant speedup in all directions and can
<till take some advantage of runs by plotting pixels N at a time.
A symmetry-based speedup can halve the pixel address cal-
culation time. It can also be combined with other speedup tech-
nigques.* but it is complicated by the ambiguous case of lines
crossing exactly midway between two integer coordinates. Fur-
ther, symmetry-based speedup applies only to lines with integer
end points. Within a windowing graphics system, all primitives
might be clipped to arbitrary boundaries. In the worst case (3
line cut in half by a window boundary), the symmetry property
cannot be used at all. The symmetry-based speedup reduces
scan conversion costs, but it does nothing about memory band-
width limits. This is its principle disadvantage. 8
Bao and Rokne® developed a quad-step algorithm in a some-
what different manner. Table 2 makes some comparnsons be--
tween their eight-suboctant algorithm and the six-suboctant
algorithm described here. In the 80960 architecture, compar-
isons are cheap and taken jumps are expensive. This is repre-
sentative of many current machines (both RISC and CISC

1EEE Computer Graphics and A

oo

e ki

N-5tep incremental Strarght-Line Algarithm

Table 2. Algorithm metrics.
- Compact Full Eight-Suboctant
390 390 _ 702
Total code size 7
(Bytes) 160 1,740 7,020 _ 14,976
Arithmetic (2 units) _ _
(Primitives/pixe) a0 _ 15 _ 15
Writes (3 units) 7 _ handles cases where E =0
(Primitives/pixel) 10 _ 10 10 differently and therefore can-
! | not be used as a transparent
Taken jumps (6 units) J qm__u,unna.nnp for Bresenham's
(Primitivesipixel) 075 0316 0.471 line routsne:
The eight-suboctant algo-
Not-taken jumps (3 units) 7 _ rithm’s different discrimina-
(Primitivesipixel) 15 0.438 0.25 tor also makes it necessary 10
| _ formulate a single-step or
Costipixel _ _ per-pixel clipped version of
(Units/pixel) 15 __ 854 _ §Ed the algorithm to complete the
tail case. Using Bresenham’s
T | _ algorithm for this purpose
(Mpixels/second) 104 218 2239 | would introduce extra com-
I plexity in calculating a dis-
Bandwidth fimit _ criminator and lead to
(Mpixelsisecond) 4.00 7 4.00 _ 5.24 _ :dmn.nnu.ww_n results in 2 win-
| dowing system where region
Utilization _ _ clipping might cause a given
(Percent of fimit) | a1 54 7 46 straight line to be drawn in
| - * several small pieces. In addi-
80960CA performance _ _ | tion. & ﬂa.mqua_._._mq using the
(Mpixeisk) 7 55 7 aig | P 7 system might find it discon-
certing to have. say, a dashed
— 7 | line use different pixelization
(Mpixels/second) 625 6.25 _ 8.19 from a solid line. Finally, the
eight-suboctant algonithm
Utilization _ does not seem to be symmet-
(Percent of imit) Fe 7 o6 as * rical about the arctan(1/2)
line, which means it is impos-
. sible to develop a compact

designs) and tends to indicate that the six-suboctant routine
will be faster, since it uses fewer taken jumps. The difference is
slight, however, and in practice the two algorithms will run at
comparable speeds.

The size estimates in Table 2 assume that the eight- and six-
suboctant routines are similarly implemented and hence use a
similar amount of code per glyph write routine. The eight-sub-
octant algorithm has eight suboctants of eight glyphs to choose
from. while the six-suboctant routine has six suboctants of five
glyphs; hence, the 2:1 code size difference. Simulation results
indicated that the different choice of discriminator in the eight-
suboctant falgorithml leads to different pixelization from that
of Bresenham-based algorithms. There is no indication that
the eight-suboctant algorithm is any less accurate, just that it

May 1994

version of the algonthm.

N-step algorithms

The process used to generate the quad-step algorithm can
be generalized for any number of pixels per inner loop. 1 have
implemented the techniques described below in a program that
automatically generates algorithm information equivalent to
that in Table 1 for N from 1to 32. I then used the tables in line-
drawing simulations. These techniques can also determine
which glyphs within a suboctant may legally follow each other.

The basic technique is a number sieve. Fora given N, all pos-
sible combination of X and D are generated and sieved to dis-
cover the glyphs that could be part of a Bresenham-algorithm-
generated line and the range of line slopes over which the glyphs
could be used. The sieve fest examines all possible substrings
within the string of length N and computes either a lower or

T

upper slope limit depending on whether the string ends inan X
or a D. The slope is computed as the ratio of K1 over—K2 and
therefore varies from 0 to «=. If the string being tested ends in
an X, then a possibly new upper limit is computed as

(number of Dsin the string + 1 Y(number of Xsin the string — 1)
then a possible new lower

If the string being tested ends in a D,
limnit is computed as

(number of Ds in the string — 1)/(number of Xsin the string+1)

Any glyph with an upper limit less than or equal to its lower
limit cannot be part of a Bresenham algonthm straight line. The
boundaries of the suboctants are the slopes at which any glyph
enters or exits its usable range. A glyph’s usable range often
covers several suboctants.

If we regard a glyph as a binary pumber with the most sig-
nificant bit on the left, with X taking the value 1. and with D tak-
ing the value 0, then we can order the glyphs for testing against
the lowest to highest values of £ by listing them from greatest
to least binary value (see the rows in Table 1 for N =4). Note
that the number of glyphs within a suboctantis always N + 1.

The decision condition between two glyphs within a suboc-
tant is the negative value of the left-most common siring of Xs
and Ds, when expressed as the sum of K1s and Kls, respec-
tively (again, see Table 1 for the N'= 4 case.) When a glyph is
plotied, we calculate the change in the error term simply as the
number of Xs and Ds expressed as the sum of K1sand K2s, re-
spectively. We can check the legality of one glyph in an octant
following another by applying the sieve test 1o the concatena-
tion of the glyph sequence being considered. restricted to the
suboctant range in guestion.

Conclusion

The quad-step algonthm is too large o justify its use in older
hardware with limited memory space. but it can be viable in
the context of modern memory and software sizes. Because the
algorithm reduces both calc ulation overhead and the number of
memory accesses for adjacent pixels. it can improve the per-
formance of current systems that are limited in their processor
speed and of future systems that might be limited in their mem-
ory speed. The algorithm gives results identical to those from
Bresenham's single-step routine while drawing pixels in the ex-
pected direction from start 1o end point—advantages not shared
by all fast line-drawing algorithms. Furthermore. as the gradual
trend towards more bits per pixel continues. @ processor sup-
porting multi-word burst data instructions could make good
use of this algorithm in speeding up line drawinginto a 24-bits-
per-pixel, one-pixel-per-word color frame buffer.

1 chose to implerent the value N =4 because it gave a use-
ful performance improvement without exceeding the resources
(cache and register space) of the target processor. and it was
small enough to hand code. However. the techniques described

Table 3. Larger numbers of pixelsistep.

4 6 5 3.07
8 22 9 313 76
16 BO 17 3.32 498 o
32 324 33 326 3,650
|
here can be used to construct a straight-line algorithm that gen-

erates more than four steps per loop. For larger values of N, it
seems desirable to generate code automatically using the out-
put of the N-step sieve. Table 3 summarizes the scope of algo-
rithms with values of N that are greater than four in
power-of-two increments (to satisfy alignment restrictions).
The relatively small average decision tree sizes indicate that al-
gorithms of greater than four pixels per step might further im-
prove line-drawing efficiency. [m |

References
1. LE. Bresenham. “Algorithm for Computer Control of a Di
Plotter,” IBM Systems .. Jan. 1965, pp. 25-30.

2. 1. Boothroyd and P.A. Hamil “Exactly R ible Plotter
Paths.” Australian Computer J.. Jan. 1965, pp. 23-30.
3. 1E Br b “Ambiguities in Inc: I Line R ing,”

IEEE CG&A. Vol. 7, No. 5, May 1987, pp. 31-43.

4. 1E. Bresenham, “Run Length Slice Algorithm for Incremental
Lines.” in Fundamental Algorithms for Computer Graphics, RA
Farnshaw, ed.. Springer-Verlag, Neéw York, 1985.

5. . Baoand 1. G. Rokne. “Quadruple-Step Line Generation.” Com-
puiers & Graphics, Vol. 13, Neo. 4, 1989, pp. 461-469.

6. B0060K B Programmers Reference Manual, Intel Literature Sales,
Santa Clara, Calif.. 1988,

7. G.J. Myers, D.L. Budde. The 8090 Microprocessor Architecture,

Wiley, New York, 1983,
. 1. G. Rokne, B. Wywill. and X. Wu,
ACM Trans. Graphics, Vol 9 No. 4, Oct. 1990,

“Fast Line Scan-Conversion.”
pp. 376-388.

o

Graeme W. Gill is a design engineer at Labtam
Australia. His work focuses on high-performance
digital design and the optimization of graphics
software and hardware architecture for Labtam's
X11 server-based products. In his spare time. he
maintains xli. an X11 image viewer. Other tech-
nical interests include audio and video technolo-

- gies. Gill received his BE from Roval Melbourne
Institute of Technology in 1984, He is a member of IEEE and ACM.

Readers can contact Gill at Labtam Australia Pty. Lid.. PO Box 297
Mordialloe, Victoria, Australia, 3195 e-mail graeme@labtam oz au.

Readers interested in a copy of the author's implementation of the N-
pixelistep table generator should contact him by e-mail.

IEEE Computer Graphics and Applications

